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Abstract 

This study examines the causal impacts of the Clean Development Mechanism (CDM) 

on the environmental performance of Indian manufacturing firms, as measured by their 

energy use, carbon dioxide (CO2) emissions and respective intensities. The impacts of 

the CDM projects are estimated by combining statistical matching with the difference-

in-differences approach. We found that the CDM projects significantly reduced firm 

CO2 intensity and energy intensity, but had no effect on total CO2 emissions. Our 

results also reveal different channels through which firm CO2 intensity was likely to be 

improved. We showed that firms hosting CDM projects increased the use of clean fuels 

and energy sources. These results suggest additionality of the CDM projects hosted by 

manufacturing firms in India had the firms’ sales expanded in a similar fashion absent 

the CDM projects.  
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1. Introduction 

To apply for carbon credits in the context of an offset program, one must prove additionality 

of the project. Additionality, however, is extremely difficult to prove.1 In the context of the 

Clean Development Mechanism – the largest international offset programme linked to the 

Kyoto Protocol – a project is deemed additional if “anthropogenic GHG emissions are 

reduced below those that would have occurred in the absence of the registered CDM project 

activity.” The difficulty lays in defining the right counterfactual to show that GHG emissions 

were reduced because of the implementation of the CDM project. However, researchers have 

the tools to empirically estimate ex post the causal impacts of participating into a program by 

comparing participating firms with non-participating “control’’ firms, controlling for 

industry-wide trends in technology and demand. This paper argues that to prove additionality 

of CDM projects, we must rely on these standard policy evaluation techniques.  

Existing studies that estimate the economic and environmental impacts of CDM projects ex 

post mostly fall into two groups.2 First, some papers studied the impacts of CDM 

participation at a macro or regional level. For instance, Huang and Barker (2012) found that 

CO2 emissions per capita decreased with CDM participation at the country level. By contrast, 

Zhang et al. (2018) showed that energy efficiency was not affected by the mechanism at the 

province level in China. Second, researchers have studied additionality by comparing the 

profitability of investing in wind or hydro energy production under a CDM project or without 

the CDM endorsement. They found that most of these investments were non-additional, in 

the sense that they were still profitable even without the participation into the offset program 

(Dechezlepretre et al., 2014; Haya and Parekh 2011).  

In this paper, we use firm-level data in India for the manufacturing sector to assess ex post the 

impacts of CDM projects on firms’ environmental performance. The names of companies 

that participate into at least one registered CDM project are available from the CDM Pipeline 

UNEP Database. We merge this information with the Prowess dataset that contains firm-level 

balance-sheet information along with the name of each firm.3 Since we observe detailed 

energy-use data in Prowess, we can also compute CO2 emissions associated with production, 

and thus assess the impacts of CDM projects on total emissions as well as on CO2 emission 

intensity of firms. Because participation into a CDM project is voluntary, we may worry that 

some unobservable characteristics of firms may induce both the CDM participation and some 

reductions in CO2 emissions for instance. Our empirical strategy relies on comparing the 

outcomes of participating firms with carefully identified control firms using a difference-in-

differences approach. We first identify control firms using matching techniques that compare 

observables for the participating firm and its control firms two years before the CDM project 

starts. We then use several difference-in-differences (DID) models to estimate the effects of 

CDM projects on firm environmental performance. One of the DID models allows for 

different treatment dates, which is particularly convenient in our setting since CDM projects 

start at different times.  

 
1 The CDM has been heavily criticized for lacking additionality. Its design does not require specific data 

provision, does not use standardized baselines, and allows for claims of technologies being “not common 

practice” by developers without verifying these claims (Michaelova and Purohit, 2007; Schneider, 2007). 

Additionally, conflict of interests between developers and verifiers, as well as asymmetrical information 

between companies and the Executive Board of the CDM, undermine the efforts for securing additionality 

(Wara and Victor, 2008). 
2 For an overview of the literature on CDM projects, we refer to Spalding-Fecher et al. (2012). 
3 The other manufacturing database in India, the Annual Survey of Industries (ASI), run by the government each 

year does not contain the name of firms. 
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We find that firms hosting CDM projects significantly reduced their CO2 intensity and energy 

intensity, while leaving their total CO2 emissions unchanged or increased. Our results reveal 

different channels through which firm CO2 intensity was likely to be improved. We show that 

firms hosting CDM projects increased the use of clean fuel and energy sources and generated 

more electricity on site instead of purchasing it from the grid. Additionally, we test the 

sensitivity of these results to unobserved selection into the treatment. To do so, we exploit the 

fact that not all firms that applied for hosting CDM projects were successful. These 

“unsuccessful firms” are especially eligible to be part of the control group as they were as 

likely to host CDM projects as the “successful firms”. As suggested by earlier studies (see, 

e.g., Bernini and Pellegrini, 2011), the rejected application group is very similar to the 

treatment group in terms of its characteristics and allows to isolate the effects of policy 

intervention. We validate most of our results using the unsuccessful firms as a control group 

although some results lose their statistical significance. 

Overall, our results tend to show additionality of the CDM projects hosted by manufacturing 

firms in India. However, the best evidence of additionality in our context is in the reduction 

of emission intensity, that is in a technique effect. A scale effect counteracts this technique 

effect so that total emissions are either constant or increasing after the CDM project has been 

implemented. We argue that the definition of additionality should be refined to consider both 

scale and technology effects. Indeed, these two effects matter for developing countries that 

continue to grow and where firms use technologies that are far from the frontier.  

This paper is organized as follows. Section 2 provides a brief literature review of 

additionality issue. Section 3 describes the institutional setting of CDM project registration 

process and discusses the participation decision in the mechanism from the point of view of 

the firm hosting a CDM project.  Next, we describe our data and empirical strategy in 

Sections 4 and 5, respectively. Estimation results and discussions are provided in Section 6. 

Finally, Section 7 presents our conclusions.  

 

2. Literature review 
 

Existing research on additionality can be grouped into three categories: (1) early studies that 

address additionality by analysing Project Design Documents (PDD), (2) studies that use 

aggregate macro level data to analyse whether participation in CDM projects in a broad sense 

alter aggregate CO2 emissions, and (3) research that tries to estimate causal effects of CDM 

projects ex post by using micro level data.  

Early additionality studies are rather qualitative and descriptive in nature and are based on 

analysis of PDDs submitted for CDM project registration purposes. They confirm the lack of 

additionality for over 40% of registered CDM projects and 20% of Certified Emission 

Reductions (CER) generated (Schneider, 2007; Michaelowa and Purohit, 2007). Sutter and 

Perreno (2007) provide indications of additionality through analysis of internal rate of return 

(IRR). If a CDM project substantially increases the IRR compared to the baseline IRR, the 

project is likely to be additional. They conclude that a majority of CERs (but a small number 

of projects) are likely to be additional, but their conclusions are highly influenced by low-

hanging fruit projects (e.g., HFC-23 emission reduction projects). 

Erickson et al. (2014) conclude that the efficiency of the CDM crucially hinges on the 

additionality of large-scale wind and hydropower projects. Sawhney and Rahul (2014) find 

that state fiscal incentives played an overwhelming role in determining renewable energy 
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projects in India. Moreover, He and Morse (2010) show that host countries may be eager to 

change their national policies (feed-in tariffs, fiscal incentives) in order to trigger 

additionality from a financial perspective. Trotter et al. (2015) find that industrial emission 

reduction and wind power CDM projects were undertaken even when prices of CER were 

low, which indicates that those projects are not very CER price sensitive. 

There are several empirical studies that analyze additionality of CDM projects ex post by 

using macro level data. For example, Huang and Barker (2012) perform their analysis by 

using the panel data of 80 countries and time span of 1993-2009. They find that CDM 

projects significantly reduced total CO2 emissions per capita (by 1.31%) and those from the 

manufacturing and energy sectors (by 3-8%). Zhang et al. (2018) use the Data Envelopment 

Analysis and panel quantile regression model to study the relationship between the overall 

energy efficiency and carbon emission performance in sixteen countries hosting CDM 

projects during 1990–2015 period. They find that CDM projects do not improve the overall 

energy efficiency. However, CDM projects positively affect the environmental performance 

but only for lower carbon emission performance countries. The direction of the impact 

becomes negative with higher quantiles of carbon performance of CDM host countries. 

Zhang and Wang (2011) study the additionality of CDM renewable and energy efficiency 

projects in China through the prism of co-benefits. Since SO2 emissions are co-generated 

along with CO2 emissions in grid-level emission baseline, the CDM projects should lead to a 

decrease in SO2 emissions as well. They find no reduction in SO2 emissions, which suggests 

that CDM projects did not decrease CO2 emissions neither. This casts doubt on additionality 

of CDM projects.  

To the best of our knowledge, only one study addresses additionality ex post using project 

level data. Dechezleprêtre et al. (2014) study additionality of wind power CDM projects in 

India. They exploit the fact that CDM wind power projects co-exist with wind power projects 

that did not receive financial support from the CDM offset. The additionality of CDM wind 

power projects would be verified if non-CDM projects differ in characteristics that affect 

their investment profitability. The methodology used to test for additionality consists on 

matching of CDM project with non-CDM ones that have clearly lower profitability. 

Dechezleprêtre et al. (2014) find that 52% of wind power CDM projects were non-additional 

and only 1% is additional.  

 

3. Institutional CDM settings  

The participation in the CDM is voluntary. Several stages need to be validated in order to 

generate Certified Emission Reduction credits from CDM activity. First, projects participants 

must receive a letter of approval from a designated national authority (DNA) stating that the 

project assists the host country in achieving its sustainable development goals. Then, project 

participants submit the project activity to the Designated Operational Entity for evaluation. In 

this stage, a project design document is reviewed against the requirements of the CDM 

program and if these are met, the project is validated. Next, the project needs to be registered 

by the CDM Executive Board. A proposed activity may be withdrawn or rejected at any stage 
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of the process. Revisions may be required in order to comply with the requirements of the 

CDM.4  

The participation process in the CDM depends on the interests of many players, including 

hosting firms, consultants, host countries representatives (DOE and DNA) and the Executive 

Board. The preferences of the Executive Board and DOE have been studied by Xie et al. 

(2014) by comparing registered and rejected CDM projects. They find that higher reported 

price of CERs and internal rate of return without offsets increase the probability of rejection, 

whereas the bigger scale and higher generation capacity projects have a lower probability of 

rejection.  

From the hosting firm’s point of view, Lutken (2012) states that the prime drivers for CDM 

investments are not revenues from CERs but other considerations, mostly revenue stream 

gained from electricity generated. Several other factors motivate and encourage firms to 

engage in CDM projects. First, firms must be able to detect the opportunities that come from 

the CDM offset. The presence of R&D activities in a company stimulates innovation and 

allows firms to look for such opportunities. In particular, energy efficiency engineers help to 

identify project space suitable for CDM activities (Schneider et al.,2009; Phillips et al., 

2013). In similar vein, large companies that are more prone to export and/or have 

multinational affiliation may also have more information about suitable CDM investments 

(Phillips et al., 2013; Dechezlepretre et al., 2009 and 2008). Firms belonging to the same 

group of companies should be equally more inclined to participate in CDM projects, if a 

positive experience already took place within their group. Second, identified opportunities 

should be followed by real capacity to undertake the project. Schneider et al. (2008) notice 

that “most barriers tend to be more striking for SMEs, especially lack of information and 

access to capital.” Production size, human capital capacity and financial capacity have a 

preponderant role in stimulating participation (Pulver et al., 2010; Arimura et al., 2012; 

Schneider et al. 2009).  

Carbon market consultants are often primary agents to push for CDM projects. Trusted 

information from business networks and pre-existing relationships with carbon industry 

provide a positive incentive to participate in CDM (e.g., see Pulver et al. (2010) for the sugar 

industry). This raises the question of what attracts the interest of carbon market consultants. 

Large companies with obsolete technologies provide large opportunities for emissions 

reduction and attract the attention of consultants in the first place (UN CDM website; Koo, 

2017; Zhang et al., 2018). Other factors that are important for consulting companies are raw 

material base, financial stability of partner, sustainable business, capacity to maintain the 

change and improvement on the level and shared views and values (UN CDM website- media 

podcasts). Consultants are therefore important factors in determining participation through 

the payment structure for their services (e.g., upfront or as a share in CER).   

Finally, state regulations are of equal importance in triggering participation decision since 

firms have little incentives to engage in emission reductions if regulation is weak or if there 

are no subsidies for alternative sources/taxes on conventional sources of energy.  

 

 

 
4 Source: UN website: cdm.unfccc.int. 
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4. Data  

Data sources 

First, the information about CDM projects comes from the CDM Pipeline UNEP Database.5 

Among the 12,474 CDM projects reported in the database, 3,337 are hosted in India. Among 

these projects, 1,669 of them obtained registered status, 247 were in the process of 

registration (requested validation status) whereas the rest obtained unsuccessful status under 

various reasons (i.e., projects were withdrawn, rejected, negatively evaluated or replaced). 

Table 1 shows the number of the main types of projects for the three different statuses. 

Table 1. Different types of CDM projects under registered, under evaluation or rejected 

status 

Type of project Number of 

Registered 

Projects 

Number of 

Projects under 

Evaluation 

Number of 

Unsuccessful 

 Projects 

Wind energy 

Biomass energy  

Hydro energy 

Solar energy 

Energy efficiency through own generation 

Energy efficiency in industrial process 

717 

263 

167 

133 

75 

59 

68 

37 

26 

35 

19 

12 

273 

282 

123 

25 

133 

133 

Sources: CDM Pipeline UNEP Database and authors’ compilation. 

According to Phillips et al. (2013), Indian CDM projects are mostly unilateral activities 

undertaken by Indian firms solely with no investing country or buyer on hand. This would 

suggest that these projects have the potential to generate enough revenues (for instance, from 

electricity generation) that firms do not need to secure CERs’ buyers upfront. Indeed, Table 1 

indicates that most Indian projects (both registered or unsuccessful) aim at producing energy 

with renewable resources or at improving energy efficiency through self-generation of 

electricity or through investments in the manufacturing production process. 

Second, we utilize the data on Indian manufacturing firms compiled by the Center for 

Monitoring the Indian Economy (CMIE) in a dataset called Prowess. The data is based on 

annual reports filed publicly by large Indian manufacturers. We compile a firm-level panel 

data that spans the period from 1988 to 2016. The Prowess dataset contains information 

primarily from the income statements and balance sheets for 109,579 firm-year observations. 

Variables include revenues, value of total assets, value of fixed capital stock, total costs of 

labor, materials and energy used in production. Industries are grouped using India’s National 

Industrial Classification (NIC) codes. Additionally, the dataset contains detailed description 

of the energy inputs used for production for 46,326 firm-year observations. In particular, 

firms report annual expenditures and consumption (with units) of different energy sources – 

including coal, electricity from the grid, natural gas and biomass. Using these detailed energy 

use reports, we compute CO2 emissions related to production at the firm level.  

To compute CO2 emissions from manufacturing production, we follow previous work in 

multiplying energy consumption by fuel-specific CO2 emissions factors (Marin & Vona, 

 
5 The authors obtained the version of the CDM Pipeline UNEP DTU CDM/JI Pipeline Analysis and Database 

from May 2019 (http://www.cdmpipeline.org/). 

http://www.cdmpipeline.org/
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2017; Forslid et al., 2018; Barrows & Ollivier, 2018). This strategy rests on the assumptions 

that a given source of energy has a fixed carbon content and that burning the energy inputs 

releases that carbon content, which forms CO2 in combination with oxygen, regardless of the 

technology used. These assumptions seem reasonable in the context of CO2 in India where 

carbon capture technologies are not often used, and for primary energy sources (e.g., coal, 

gas, petroleum). In the context of electricity production, however, technologies play a role in 

determining the amount of CO2 emissions associated with a kWh of electricity. When firms 

independently produce electricity, they report the energy inputs used for that self-generation, 

hence we can compute CO2 emissions from self-generated electricity using the quantities of 

energy sources and multiplying them by our CO2 emissions factors. When firms purchase 

electricity from the grid, we use a CO2 emissions factor that reflects the average energy mix 

of electricity in India. In fact, the location of production is not reported in Prowess, hence we 

cannot attribute regional CO2 emissions factors for electricity to firms. We provide details on 

the construction of these variables in Appendix A. 

Merging the two datasets 

Both the CDM Pipeline UNEP dataset and the Prowess dataset identifies firms by their name. 

Most CDM projects have more than one firm participating in the project. We thus create lists 

of firms participating in each CDM project. And we merge the two datasets by hand based on 

name recognition. Since the Prowess database focuses on the manufacturing sector, CDM 

projects hosted by the power sector are by construction excluded from our analysis. From our 

list of 734 firms that were successful in implementing at least one CDM project, we found 

388 of them in Prowess; and from our list of 521 firms that were unsuccessful in 

implementing a CDM project, we found 328 of them in Prowess.  

Main outcomes variables 

Since firms’ economic and environmental performance can be measured in many ways, we 

use different outcome variables in our analysis. First, firms’ economic performance is 

reflected by total sales, total assets, the amount of fixed capital, and compensation for 

employees (wages). These variables will reflect the size of firms and also their financial 

capacity to invest in CDM projects. Second, firms’ environmental performance is reflected by 

the level of total CO2 emissions (in kilotonne – kt) used in production and by their CO2 

emissions intensity (in kt of CO2 per rupees of sales). We also consider total energy 

expenditures and energy intensity as the ratio of total energy expenditures over total sales. 

The larger this ratio, the more firms should pay attention to their energy bill and be willing to 

pay for energy efficiency investments. Finally, we will look at particular energy expenditures 

to understand potential impacts of CDM projects on the energy mix of firms. We therefore 

compute coal expenditures and expenditures for clean fuels and other energy sources (e.g., 

wind power). Last but not the least we consider expenditures for electricity bought from the 

grid and expenditures of self-generated electricity as well as changes in the total fixed capital 

stock. 

Descriptive statistics  

Table 2 provides the descriptive statistics measured separately for CDM firms and non-CDM 

firms for the period 1988-2016.  In the sample of CDM firms we include only whose CDM 

firms that are observed in Prowess database during CDM project registration year and at least 
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two years before and two years after CDM project registration date. This leaves us with 266 

unique CDM firms. CDM firms are, on average, more CO2 intensive, consume a higher share 

of energy and fuel inputs, including the amount of coal. This is in line with our expectations, 

as more energy intensive firms have more incentives to reduce their energy use and improve 

their emission intensity. It is also evident that CDM firms, on average, generate more 

electricity on site and purchase less electricity from the grid when compared to non-CDM 

firms. CDM firms are also, on average, bigger in terms of total sales, total assets, fixed 

capital and compensation for employees.  

The sectoral allocation reveals (see Table 3) that CDM firms, which are observed in our 

sample, are operating in various manufacturing sectors. Most CDM firms belong to the 

sectors producing food products, beverages and tobacco and to the sectors of manufacturing 

of basic and fabricated metals products. Textiles and chemicals are the other two 

manufacturing sectors where we observe a rather high number of CDM projects.  

 

5. Empirical strategy 

 

5.1 Identification of causal effects 

In order to estimate causal effects of CDM projects on firm environmental performance, we 

base our analysis on the potential outcome framework that is now standard in the program 

evaluation literature. The two potential outcomes are 𝑌1  (firm’s CDM project is granted 

meaning the firm received the treatment, 𝐷 = 1) and 𝑌0   (firm does not receive the treatment, 

i.e., the firm did not apply for a CDM project or the firm’s application for CDM project was 

unsuccessful, 𝐷 = 0). The observed outcome for any firm i can be written as: 𝑌𝑖 = 𝑌𝑖
1  ∙  𝐷𝑖 +

(1 − 𝐷𝑖) ∙ 𝑌𝑖
0. The treatment effect for each firm i is then defined as the difference between 

its potential outcomes: 𝜏𝑖 = 𝑌𝑖
1 − 𝑌𝑖

0. However, the fundamental problem with causal 

inference is that we cannot observe both potential outcomes for the same firm at the same 

time. That is, in our case, we do not know what would have happened for CDM firms if they 

had not hosted CDM projects.  

In our analysis, we will focus on the most known evaluation parameter, which is the average 

treatment effect on the treated (ATT), and is given by: 

𝜏𝐴𝑇𝑇 = 𝐸(𝑌1 |D = 1) − 𝐸(𝑌0|D = 1).      Eq. 1 

The last term on the right-hand side of Eq. (1) describes the hypothetical unobserved outcome 

without treatment for those firms that receive the treatment. Since the condition 

𝐸(𝑌0|D = 1) = 𝐸(𝑌0|D = 0) is usually not satisfied with non-experimental data, estimating 

ATT by the difference in sub-population means of participants 𝐸(𝑌1 |D = 1) and non-

participants 𝐸(𝑌0|D = 0)  will lead to a selection bias. This bias arises because participants 

and non-participants are selected groups that would have different outcomes, even in the 

absence of CDM investments due to observable or unobservable factors. In this study we will 

apply matching and thus we will rely on the conditional independence assumption (CIA), 

which states that conditional on observable characteristics (X) the counterfactual outcome is 

independent of treatment:  𝑌0 ⊥ 𝐷 │𝑋, where ⊥ denotes independence. In addition to the 

CIA, we will also assume a common support or overlap condition. This ensures that any 
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combination of characteristics observed in the treatment groups can also be observed among 

the control group, in other words, that there are no perfect predictors which determine 

participation into treatment. These assumptions are sufficient for identification of the ATT 

(Heckman et al., 1997). 

𝜏𝐴𝑇𝑇
𝑀𝐴𝑇𝐶𝐻𝐸𝐷 = 𝐸[𝐸(𝑌1|𝑋, 𝐷 = 1) − 𝐸(𝑌0|𝑋, 𝐷 = 0)│𝐷 = 1],   Eq. 2 

where the outer expectation is taken over the distribution of X in the treated group.  

The CIA is clearly a very strong assumption and the applicability of the matching estimator 

depends crucially on its plausibility. Blundell et al. (2005) argue that the plausibility of such 

assumption should always be discussed on a case-by-case basis. Only variables which 

simultaneously influence the participation decision and the outcome variables should be 

included in the matching procedure. Hence, economic theory, a sound knowledge of previous 

research and information about the institutional setting should guide the researcher in 

selecting matching variables. We studied the literature on firm decision to host CDM projects 

and we use firm economic indicators, which enables us to control for numerous firm 

characteristics and market conditions. Additionally, we test the sensitivity of the results with 

respect to unobserved selection into the treatment (see Section 4.3). That is, in the estimation 

of the counterfactual, we exploit the fact that not all firms that applied for hosting CDM 

projects were successful. This means that these “unsuccessful firms” are especially eligible to 

be part of the control group, as they show a propensity for hosting CDM projects and a need 

to invest in environmental measures which is very similar to that of “successful firms.” As 

suggested by earlier studies (see, e.g., Bernini and Pellegrini, 2011), the rejected application 

group is very similar to the treatment group in terms of its characteristics and allows to isolate 

the effects of policy intervention. 

Furthermore, we apply conditional difference-in-differences estimator, which enables us to 

control for time-invariant unobserved differences between participants and non-participants 

and which further relaxes the CIA. Conditional DID was initially suggested by Heckman et 

al. (1998). It combines a conventional DID estimation and matching. As CDM projects start 

(i.e., are registered) in different years, that is we have heterogeneous treatment start dates, we 

will rely on the flexible conditional DID approach suggested by Dettmann et al. (2019), 

which allows for the flexibility in the definition of treatment start and treatment duration and 

the possibility to consider time information in the matching process.  

The first step of flexible conditional DID is an extensive data reorganization to incorporate 

the observation date of all matching variables and outcomes. The flexible conditional DID 

algorithm limits the set of potential control firms for every treated firm to those observed just 

at the individual matching date, e.g., the pre-treatment start. Then the matching algorithm 

selects one or more statistical twins among these pre-selected firms.  

The second step is matching. In this study, we will implement nearest neighbour matching 

based on a combined statistical distance function (for more details see Dettmann et al., 2019). 

In the third step, based on the matched and balanced sample, we will estimate the average 

treatment effect for the treated as follows: 

 

𝜏𝐴𝑇𝑇
𝑀𝐴𝑇𝐶𝐻𝐸𝐷−𝐷𝐼𝐷 =

1

𝐽
∑ (𝑌𝑗,𝑡1𝑗+𝛽𝑗

− 𝑌𝑗,𝑡0𝑗
)𝐽

𝑗=1 −  
1

𝐽
∑ 𝑤𝑗𝑘 (𝑌𝑘,𝑡1𝑗+𝛽𝑗

− 𝑌𝑘,𝑡0𝑗
) ,𝐾

𝑘=1   Eq. 3 
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where J denotes the number of firms in the treatment group in the matched sample. The 

treated CDM firms are indexed by j; the non-CDM firms are indicated by k. The weight 

placed on firm k when constructing the counterfactual estimate for treated facility j is 𝑤𝑗𝑘. In 

our case, as we will implement nearest neighbour matching with replacement, the weight 𝑤𝑗𝑘 

shows how many times the matched control firm is used to construct the ATT. Note that the 

flexible conditional DID compares the mean of the individual differences in outcome 

development between the treated firms j and their respective controls k. As can be observed 

from equation 3, we include individual pre-treatment start dates, denoted by index 𝑡0𝑗, and a 

flexible number of time units, e.g. years, 𝑡1𝑗 + 𝛽𝑗, reflecting the individual duration of the 

treatment. Due to heterogeneous treatment start dates and treatment durations, the observed 

periods can be heterogeneous among the treated individuals.   

In addition to the flexible conditional DID estimator, we also provide the mean treatment 

effect estimators and yearly mean treatment estimators from the fixed-effects DID models. 

For this purpose, we use a panel dataset for the matched firms.These parametric DID models 

control for year effects and industry-year effects.  

For identification of causal effects, any general equilibrium effects need to be excluded, that 

is treatment participation of one firm cannot have an impact on outcomes of other firms. This 

corresponds to the stable unit treatment value assumption (SUTVA). Imbens and Wooldridge 

(2009) argue that the validity of such an assumption depends on the scope of the program as 

well as on resulting effects. We argue that in the case of CDM projects in India, the SUTVA 

is potentially fulfilled because these projects are of small scope and of scattered geographical 

coverage. One of the possible and most evident “spillover channels” could be, if a CDM firm 

is related to another CDM or non-CDM firm via the same firm ownership. In this case we 

might suspect that some CDM-induced technological solutions may be passed on to related 

firms. To the best of our knowledge, in our sample we do not have such firms.  

 

5.2 Estimation procedure 

After having discussed identification issues, we proceed with the estimation of causal effects. 

We apply nearest neighbour matching based on a combined statistical distance function. Let’s 

us briefly discuss the main components that influence the selection into the treatment. After 

our discussion in Section 2 it is clear that many variables might be important for selection 

into CDM projects since participation in a CDM project activity is voluntary.  

As a rough guide, to facilitate the selection of matching variables that will be used in the 

flexible conditional DID approach described above, we estimate the propensity scores for 

CDM firms versus non-CDM firms for the year 1999 – one year before the first CDM 

projects appear in our sample. We test different specifications following economic theory and 

previous empirical findings as discussed above. We also check econometric indicators such 

as significance of parameters or pseudo-R2 to find the final list of matching variables. The 

results of the probit-estimation can be found in Table B1 in Appendix B. In the case of the 

Indian manufacturing sector, we observe that variables describing firm production (total 

sales) and main inputs (total fixed capital assets and compensation for employees) are 
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important. We may argue that larger firms have the capital and capabilities to undertake 

CDM-related investments. Many other variables, such as age, exporter status, sectoral 

activity, location among many others, appeared to be insignificant or only slightly significant, 

hence, these variables were dropped from the estimation of propensity scores. Also, to avoid 

confounding, we dropped the share of fuel expenditure from the matching, even though it was 

evident that firms with higher shares of fuel expenditures in total material expenditures are 

more likely to host CDM projects. In addition, we provide the distribution of the estimated 

propensity scores in Figure B1 in Appendix B. As we can see, the distributions of propensity 

scores are biased towards the tails, that is only a small fraction of CDM firms have a higher 

probability, on average, of investing into CDM projects than other firms. Nevertheless, non-

CDM firms’ propensity score distribution overlaps the region of the propensity scores of 

CDM firms almost completely; therefore, the overlap assumption is fulfilled.  

In sum, the matching variables which are used in the flexible conditional DID approach are 

firm-level total sales (log), total assets (log), total fixed capital assets (log) and compensation 

for employees (log). Additionally, we include a two-digit industrial classification variable as 

an exact matching variable. We also define the matching time in relation to the treatment 

start. In our case, the matching time for each individual treated firm is two years before the 

individual treatment starts. The individual pre-treatment year is the first year before the 

individual treatment start year. To assess the quality of nearest neighbour matching based on 

a combined statistical distance function, that is, whether the matching procedure balances the 

distribution of observable variables between participants and non-participants, Appendix C 

summarises different quality measures. In sum, we can conclude that the matching quality is 

good.  

In the next step, we estimate the average treatment effects on the treated as described in 

Equation 3. We also provide the mean treatment effect estimators and yearly mean treatment 

estimators from the fixed-effects DID models by using the panel dataset for the matched 

firms.  

6. Results 

In Section 6.1, we discuss the causal effects of the CDM projects with respect to the outcome 

variables described in Section 3. In Section 6.2, we verify the validity of our results with 

respect to unobserved selection into the treatment.  

6.1 Main results 

Table 4 summarises the average treatment effects on the treated as defined in Eq. (3). As the 

CDM projects were registered at different years, for each treated firm we use the individual 

pre-treatment year. The individual pre-treatment year is the first year before the individual 

treatment start year. The outcome variables in the pre-treatment years are then compared with 

their counterparts in the subsequent five treatment years. Additionally, we report the mean 

treatment effects estimators from the fixed-effects DID models in Table 5 and the yearly 

mean treatment estimators from the fixed-effects DID models in Table 6. In the fixed-effects 

DID models the pre-treatment period consists of all pre-treatment years available in the 

sample.  

Total CO2 Emissions and CO2 Intensity 
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Table 4 shows that, when using the flexible conditional DID models, the CDM projects 

increased absolute CO2 emissions four and five years after the treatment. However, these 

ATT estimates compare the developments of CO2 emissions for the period from the first pre-

treatment year until one to five years afterwards. The ATT estimates and yearly ATT from 

the fixed-effects DID models (see Table 5 and Table 6), which consider the overall pre-

treatment period, show that the CDM projects did not significantly affect total CO2 

emissions.  

These absolute CO2 emission measures, while interesting from the point of view of the 

environmental integrity of the policy, do not allow us to discriminate between changes in 

production levels and other adjustments the firms might have made, for example, in terms of 

their fuel mix or their production technologies. To gain some insight into this second group of 

factors, we next look at changes in CO2 intensity, measured as the ratio of firm total CO2 

emissions over firm total sales. 

The ATT from the fixed-effects DID models show that the average CO2 intensity decreased 

once considering five treatment years (see Table 5). The annual ATT reveal dynamics of CO2 

intensity: these estimates show that CO2 intensity significantly decreased during the second, 

third and the fifth years of the treatment (see Table 6). Thus, CDM projects seem to improve 

CO2 intensity immediately after the official registration date of CDM projects. Also, it seems 

that the CDM projects caused not a one-off decrease in firm CO2 intensity, but rather a long-

lasting improvement. This suggests that CDM firms possibly opted to reduce their use of the 

most CO2 intensive fuels and invested in cleaner technologies. This implication is further 

strengthen by the CDM-caused increase in the total fixed capital.  

Total Energy Purchase and Energy Intensity 

To investigate which of these strategies have been followed by CDM firms, first, we start by 

looking at purchases of energy and fuels and overall energy intensity. Subsequently, we will 

look at the changes in fuel mix – purchases of coal, purchases of clean fuels and other energy 

sources, and purchases of electricity from the grid as well as self-generated electricity. 

We now ask the questions whether CDM firms increased or decreased their overall energy 

and fuel purchases and overall energy and fuel intensity as the result of the hosted CDM 

projects. As one can see in our result tables, the average treatment effects on the treated 

estimated by using all of our considered DID models show that CDM-induced dynamics of 

overall energy and fuel purchases and overall energy and fuel intensity reflect CDM-induced 

dynamics of CO2 emissions and CO2 intensity. Hence, we can conclude that because of the 

CDM projects CDM firms became less energy and CO2 intensive. Although it seems this 

result is expected, but it is not straightforward: it is not guaranteed that lower CO2 intensity is 

achieved by lower energy intensity. On the opposite, it is often postulated that reductions in 

firm CO2 intensity are achieved by the use of more expensive fuels and energy sources, 

which in the end increase the energy bill. At least in the case of CDM projects hosted by 

manufacturing firms in India this is not true.  

Fuel Mix and Electricity Purchase 

The results for CO2 intensity may suggest that CDM projects encouraged substitution from 

dirty fossil fuel sources to cleaner fuel and energy sources. To investigate the CDM-induced 
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changes in fuel mix of CDM firms, we look at the changes in purchases of coal and purchases 

of clean fuels and energy sources. 

First, we consider the impacts of the CDM projects on purchases of biofuels and clean energy 

sources. Our estimates as reported in Table 4, Table 5 and Table 6 reveal that, the CDM 

projects had a positive and significant effect on purchases of clean fuels and energy sources. 

This effect is persistent – it starts immediately at the start of the treatment and continues 

during the five-year treatment period. We argue that the increase in the use of clean energy 

sources might be one of the channels through which CO2 intensity of CDM firms was 

improved. This implies additionality (as we defined it) of CDM projects in the case of our 

sample of manufacturing CDM firms in India.  

Manufacturing firms in India are well-known for relying on large shares of coal and its 

products in their production. Our data sample reveals that some industrial firms entirely rely 

on coal and coal products. It is also evident from Table 2 that, on average, CDM firms use 

more coal than non-CDM firms. Hence, from an environmental policy perspective, it is 

desirable to reduce coal consumption among the largest coal users. As one can see in Table 4, 

Table 5 and Table 6, the average treatment effects estimated by using all our considered DID 

models show that the CDM projects had no effect on coal purchases of CDM firms. This 

result is expected in the context of the main objectives of CDM regulation.  

The final part of our analysis focuses on assessing the effects of the CDM projects on CDM 

firms’ use of electricity. In principle, industrial firms can either purchase electricity from the 

grid or generate it on the site (i.e., self-generation). Knowing that many CDM projects were 

investing into renewable electricity technologies such as wind and solar power, it is likely 

that the CDM projects increased self-generation and reduced purchases of electricity from the 

grid. These expectations are to some extent confirmed by our results. As one can see in Table 

6, the CDM projects had a negative and significant effect on electricity purchased from the 

grid (three years after treatment) and positive significant effect on electricity generated on 

site (four and five years after treatment).  

6.2 Robustness test 

We further test the sensitivity of the main results with respect to unobserved selection into the 

treatment (see our discussion in Section 5). That is, in the estimation of the counterfactual, we 

exploit the fact that not all firms that applied for hosting CDM projects were successful. This 

means that these “unsuccessful firms” are especially eligible to be part of the control group, 

as they show a propensity for hosting CDM projects and a need to invest in environmental 

measures which is very similar to that of “successful firms.” We argue that the unsuccessful-

application group is very similar to the treatment group in terms of its characteristics and 

allows us to isolate the effects of policy intervention. This argument is supported by a very 

good overlap of our estimated propensity scores for the “unsuccessful firms” and “successful 

firms” (see Appendix D).  

In this robustness exercise, we consider the same outcome variables and we estimate the ATT 

by using the same DID models as in Section 4. The estimated results are reported in Table 

D1, Table D2 and Table D3 in Appendix D. The results support our main findings albeit at 

lower significance levels. To sum up, we conclude that for “successful” CDM firms, CDM 

projects made a difference when compared to “unsuccessful” CDM firms. In particular, we 
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find that for this sample of CDM firms the CDM projects reduced CO2 intensity, energy 

intensity and increased self-generation.  The fact that the main results are supported by the 

results of this robustness test suggests that unobserved selection into treatment is not such a 

big issue in the case of our sample of CDM projects in India.  

 

7. Conclusions 

In this paper, we used firm-level data in India for the manufacturing sector to assess ex post 

the impacts of CDM projects on firms’ environmental performance. Because participation 

into a CDM project is voluntary, we may worry that some unobservable characteristics of 

firms may induce both the CDM participation and some reductions in CO2 emissions for 

instance. Our empirical strategy relied on comparing the outcomes of participating firms with 

carefully identified control firms using the difference-in-differences approach. We first 

identified control firms using matching techniques that compared observables for the 

participating firm and its control firms two years before the CDM project starts. We then used 

several difference-in-differences (DID) models to estimate the effects of CDM projects on 

firm environmental performance.  

We found that the CDM projects significantly reduced firm CO2 intensity and energy 

intensity, but had no effect on total CO2 emissions. Our results also reveal different channels 

through which firm CO2 intensity was likely to be improved. We showed that firms hosting 

CDM projects increased the use of clean fuels and energy sources. These results suggest 

additionality of the CDM projects hosted by manufacturing firms in India had the firms’ sales 

expanded in a similar fashion absent the CDM projects.  
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Table 2: Descriptive statistics, 1988-2016 

  CDM firms  non-CDM firms 

Variable 

Measurement 

Unit No. of obs. Mean  Std. Dev   No. of obs. Mean  Std. Dev 

Sales Millions R. 5,616 762 4381  103,963 46 386 

Total assets Millions R. 5,616 761 3303  103,950 46 256 

Capital Millions R. 5,612 422 1998  103,406 23 111 

Compensation for empl. Millions R. 5,616 25.4 103.6  103,963 2.7 14.4 

Share of energy and fuel expenditure % 5,616 9.98 10.34  103,954 6.0 7.9 

CO2 emissions  kt 3,728 1.76E+06 6.20E+06  43,555 3.01E+06 2.47E+08 

CO2 emission intensity  kt per R. 3,728 3.57E+05 2.08E+07  43,555 1.84E+05 1.43E+07 

Energy purchase incl. electricity  Millions R. 3,900 88.93 391.82  45,426 50.83 5962.28 

Energy intensity incl. electricity  ratio 3,900 0.18 1.71  45,426 1.61 85.05 

Electricity purchased on the grid  Millions R. 3,900 8.87 34.13  45,426 36.53 6167.67 

Electricity generated on the site  Millions R. 3,900 38.75 1327.15  45,426 6.56 376.08 

Coal purchase  Millions R. 3,900 25.27 164.07  45,426 0.67 7.30 

Biofuel purchase  Millions R. 3,900 0.54 11.71   45,426 0.04 0.34 

Notes: Sales are reported in millions of current year rupees. 
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Table 3: Sectoral distributions of CDM and non-CDM firms 

Sector name 

Non-CDM 

firms 

CDM  

firms Total 

Food products, beverages & tobacco 1,399 50 1,449 

Textiles 1,282 41 1,323 

Leather 129 1 130 

Wood & Furniture 75 3 78 

Paper & paper products 324 14 338 

Coke & refined petroleum products 108 8 116 

Chemicals 1,187 30 1,217 

Pharmaceuticals 651 6 657 

Plastics & Rubbers 606 11 617 

Non metallic mineral products 390 24 414 

Basic & Fabricated Metals 1,522 50 1,572 

Computers & Electronics 892 9 901 

Machinery & Transport equipment 1,134 15 1,149 

Other manufacturing 205 4 209 
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Table 4: ATT from the flexible conditional DID models  

Outcome variable 

1st treatment 

year 2nd treatment year 3rd treatment year 4th treatment year 5th treatment year 

CO2 emissions (log) 0.0391 0.0457 0.1234 0.2309** 0.2387* 

CO2 emission intensity (log) 0.0061 -0.0844 -0.0588 -0.1012 0.0079 

Energy purchase incl. electricity (log) -0.0243 0.0281 -0.0179 0.2845** 0.1015 

Energy intensity incl. electricity (log) -0.0442 -0.0921 -0.1852 -0.0631 -0.1108 

Electricity purchased on the grid (log)  0.0826 -0.0042 -0.0527 -0.0129  -0.1384 

Electricity generated on the site (log) -0.1 -0.0316 0.0162 0.3069 0.2619 

Coal purchase (log) 0.0132 0.0215* 0.0066 0.0016 0.0102 

Clean fuel and energy purchase (log) 0.0103 0.0558 -0.0138 0.1527 0.1821 

Fixed capital (log) 0.0453** 0.0886** 0.1325*** 0.1207* 0.2075*** 

      

      
Notes:      
1. ***p <= 0.01, **p <= 0.05, *p <= 0.1.      
2. In total, the sample consists of 266 treated firms and 9904 control firms.    
3. The numbers of the treated and control firms in the matched sample depend for which outcome variable and at which point of time the average 

treatment effects were calculated. 

4. In the matched sample, the number of the treated firms range from 123 to 257; The number of the control firms range from 94 to 217. 
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Table 5: The mean treatment effects from the fixed-effects DID models for the defined 5-years treatment period starting at individual 

treatment start. 

Outcome variable 

One 

treatment year 

Two treatment 

years 

Three treatment 

years 

Four treatment 

years 

Five treatment 

years 

Year 

effects 

Industry-

year 

effects 

CO2 emissions (log) 0.1056 0.0989 0.0212 0.0519 0.0034 Yes Yes 

CO2 emission intensity (log) -0.0129 -0.0637 -0.1141 -0.1255 -0.1779* Yes Yes 

No. of observations 3863 4061 3956 3789 3388   

Energy purchase incl. electricity (log) 0.1319* 0.1566** -0.0499 0.0155 -0.0549 Yes Yes 

Energy intensity incl. electricity (log) -0.0555 -0.1195 -0.1691* -0.1441* -0.2208** Yes Yes 

Electricity purchased on the grid (log) -0.1299 -0.1763 -0.2212 -0.2297 -0.2372 Yes Yes 

Electricity generated on the site (log) 0.4109* 0.3656 0.1564 0.4016 0.3070 Yes Yes 

Coal purchase (log) -0.0373 0.0764 0.1436 0.2063 0.0081 Yes Yes 

Clean fuel and energy purchase (log) 0.2438** 0.3205*** 0.2922*** 0.2923** 0.2568* Yes Yes 

No. of observations 4065 4245 4196 4021 3615   

Fixed capital (log) 0.1860*** 0.2227*** 0.2495*** 0.2520*** 0.2074*** Yes Yes 

No. of observations 6675 7155 7193 7091 6336   

        
Notes:        
1. ***p <= 0.01, **p <= 0.05, *p <= 0.1.        
2. In total, the sample consists of 266 treated firms and 9904 control firms.      
3. The numbers of the treated and control firms in the matched sample depend for which outcome variable and at which point of time the average treatment effects 

were calculated. 

4. In the matched sample, the number of the treated firms range from 123 to 257; The number of the control firms range from 94 to 217.  
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Table 6: The mean annual treatment effects from the fixed-effects DID models. 

Outcome variable 

1st treatment 

year 

2nd 

treatment 

year 

3rd treatment 

year 

4th 

treatment 

year 

5th 

treatment 

year 

Year 

effects 

Industry-

year 

effects 

No. of 

control 

firms 

No. of 

treated 

firms 

No. of 

observations  

CO2 emissions (log) -0.0756 -0.0649 -0.0879 0.1181 0.0933 Yes Yes 94 123 3388 

CO2 emission intensity (log) -0.1439 -0.1948* -0.2624** -0.1138 -0.1817* Yes Yes 94 123 3388 

Energy purchase incl. electricity (log) -0.1457 -0.1204 -0.2286 0.1135 0.0527 Yes Yes 101 130 3615 

Energy intensity incl. electricity (log) -0.1737 -0.2355* -0.4037*** -0.1032 -0.2033* Yes Yes 101 130 3615 

Electricity purchased on the grid (log)  -0.0823 -0.2177 -0.3844** -0.2821 -0.3114 Yes Yes 101 130 3615 

Electricity generated on the site (log) -0.0853 -0.0141 0.2683 0.6934** 0.6378** Yes Yes 101 130 3615 

Coal purchase (log) -0.2157 0.0939 -0.0700 0.0520 0.1753 Yes Yes 101 130 3615 

Clean fuel and energy purchase (log) 0.1619 0.2621* 0.2639‡ 0.3020 0.3186* Yes Yes 101 130 3615 

Fixed capital (log) 0.1174‡ 0.1588** 0.2235** 0.2488*** 0.2846*** Yes Yes 214 254 6336 

           
Notes:           
1. ***p <= 0.01, **p <= 0.05, *p <= 0.1, ‡p <= 0.15.        
2. Before matching the sample consisted of 266 treated firms and 9904 control firms.        
4. In the matched sample, the number of the treated firms range from 123 to 257; The number of the control firms range from 94 to 217.    
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Appendix A: Data Appendix 

We compile a firm-level panel data set that spans the period from 1988 to 2016 based on the 

Prowess database, collected by the Centre for Monitoring the Indian Economy (CMIE). Like 

most firm surveys, the Prowess database contains information primarily from the income 

statements and balance sheets of large publicly listed companies. 

Unlike the Annual Survey of Industries (ASI), the Prowess data is a panel of firms that have 

not been anonymized. As a result, we use the name of companies to merge the information on 

sales, production and inputs from their annual reports to the lists of participating Indian firms 

in the CDM Pipeline UNEP Database. From our list of 734 firms that were successful in 

implementing at least one CDM project, we were able to find 388 of them in the Prowess 

dataset. Additionally, from our list of 521 firms that were unsuccessful in implementing a 

CDM project, we were able to find 328 of them in Prowess.  

We only exploit firm-level information from the Prowess database, even though many studies 

have focused on the product-level information contained also in Prowess (Barrows & 

Ollivier, 2018; De Loecker et al, 2016; Goldberg et al 2010). In their annual reports, firms 

give detailed accounts of both inputs – especially energy – and outputs. In particular, firms 

report the total values of their sales, of their assets, and of their fixed assets (capital). On the 

input side, firms report total compensation to their workers (wages), the value of materials, 

and total fuel and energy expenditures. They also report in detail the value and quantity (with 

units) of each energy source – coal, electricity from the grid, natural gas, etc. – used in the 

production process. From this detailed information, we compute the share of each energy 

source in total energy expenditures.  

We compute CO2 emissions from the detailed energy-use reports contained in Prowess. We 

follow previous work in multiplying energy consumption by energy-specific CO2 emissions 

factors. In particular, we follow the same methodology as in Barrows and Ollivier (2018). We 

translate physical quantities of energy consumed into physical quantities of CO2 emissions 

and sum over energy sources to compute firm-level emissions. Source specific emissions 

factors come from the US EPA 2012 Climate Registry Default Emissions Factors 

(http://theclimateregistry.org/wp-content/uploads/2015/01/2012-Climate-Registry-Default-

Emissions-Factors.pdf). For electricity generation, we use the Indian average CO2 emission 

intensity of grid electricity that equals 951 g CO2 per kWh. Once units have been 

standardized, if we cannot match units of energy from Prowess with the EPA report, we drop 

these observations. Overall, we are able to assign an emission factor to 83% of energy source 

unit pairs (e.g., kWh of electricity). Of the 17% of such pairs that we cannot assign an 

emission factor, in many cases it appears that units have been misspecified: for instance, we 

cannot assign an emission factor to observations denominated in “liters” of electricity. 

We also address an issue relating to self-generated electricity. When firms produce their own 

electricity, they report the energy inputs used for that production. Hence, to avoid double 

counting, we compute the CO2 emissions for self-generated electricity based on the energy 

inputs reported, and we do not use the national average CO2 emission factor for grid 

electricity.  

Finally, we treat outlier observations in the input dataset in two ways. First, we identify firm 

emission intensities which look like entry errors and assign to those values instead the 

http://theclimateregistry.org/wp-content/uploads/2015/01/2012-Climate-Registry-Default-Emissions-Factors.pdf)
http://theclimateregistry.org/wp-content/uploads/2015/01/2012-Climate-Registry-Default-Emissions-Factors.pdf)
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average emission intensity of the firm over the period. This procedure affects less than 1% of 

the data. Next, we drop entire firm profile if the emission intensity of the dirtiest year of the 

firm is at least 600 times greater than the cleanest year of the firm. We also drop a few outlier 

observations with implausibly large implied CO2 emissions (1% of the data). 
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Appendix B: Measurement of propensity scores 

Table B1: Estimation of propensity scores  

Variables Coef.   Stad err. 

Sales (log) 0.3048 *** 0.0577 

Total assets (log) -0.0099  0.0914 

Total capital (log) 0.2723 *** 0.0751 

Compensation for empl. (log) -0.2182 *** 0.0519 

Constant -2.9957 *** 0.1487 

No. of observations    
LR Chi2(4)    
Prob > Chi2    
Pseudo R2       

Note: 1. ***p <= 0.01, **p <= 0.05, *p <= 0.1. 

 

 

Figure B1: Distributions of the estimated propensity scores for CDM and non-CDM firms in 

the panel satysfying the common support 
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Appendix C: Quality of matching 

To assess the quality of matching and comparability of the matched groups, the results of 

different tests are presented next. For every matching procedure, we get the results from the 

tests as provided in the Stata command pstest by Leuven and Sianesi (2003) and a graphical 

proxy of the balance of the variable distributions in the treated and control groups. The tests 

are performed at matching time, in our case, two years before the treatment starts. Below we 

summarise the tests applied for the largest matched sample. The results for the smaller 

matched samples are available from the authors upon request.  

For each of the matching variables, we find the means in the treated and in the control 

groups, a measure for the standardized percentage difference – or bias – between the means 

in both groups, and a test if the means in the control group equal the ones in the treated 

group. Additionally, we get an information on the similarity of the variances in the treated 

and the control group. From the summary of these tests presented in Table C1 we conclude 

that the means and variances of all the matching variables are balanced.  

Table C1: Ps-test 

 

 

Additionally, Table C2 presents the results of a Kolmogorov-Smirnov (KS) test. The 

corrected p-values indicate that there are no statistically significant differences in the 

matching variable distributions between the treated and control groups.  
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Table C2: Two-sample Kolmogorov-Smirnov test for equality of distribution functions 

for matching variables  
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The quantile-quantile (QQ) plots of the matching variables compare the distributions in both 

groups by means of the plotted quantiles. The 45ᴏ-line represents identical distributions. From 

Figure Figure C1 we see very small deviations from the 45ᴏ-line for all matching variables. 

This ensures even further that the quality of matching is very good. 

 

Figures C1: QQ plots of the matching variables at matching time 
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Appendix D: The sample of “successful firms” vs. “unsuccessful firms”  

 

Figure D1: Distribution of propensity scores of “successful firms” (CDM firms) vs. 

“unsuccessful firms” (non-CDM firms) 
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Table D1 ATT from the flexible conditional DID models, the sample of “successful firms” vs. “unsuccessful firms” 

Outcome variable 

1st treatment 

year 

2nd treatment 

year 

3rd treatment 

year 

4th treatment 

year 

5th treatment 

year 

CO2 emissions (log) -0.0555 0.074 0.0773 0.1276 0.011 

CO2 emission intensity (log) -0.059 -0.0058 -0.0455 -0.0117 -0.0725 

Energy purchase incl. electricity (log) -0.0387 -0.0335 -0.1185 -0.0187 -0.1966 

Energy intensity incl. electricity (log) -0.0211 -0.0855 -0.2447** -0.1343 -0.2396* 

Electricity purchased on the grid (log) 0.0054 -0.0345 -0.0925 -0.1374 -0.3515* 

Electricity generated on the site (log) -0.0248 -0.1065 0.0026 0.193 0.062 

Coal purchase (log) 0.0806 0.3815** 0.2407 0.1588 0.2777 

Clean fuel and energy purchase (log) -0.0411 0.0785 0.1014 0.1361 0.1767 

Fixed capital (log) -0.0091 0.0056 -0.0136 -0.0337 -0.0095 

Notes:      
1. ***p <= 0.01, **p <= 0.05, *p <= 0.1.    
2. In total, the sample consists of 266 treated firms and 201 control firms.    
3. The numbers of the treated and control firms in the matched sample depend at which point of time the average treatment effects were calculated. 

4. In the matched sample, the number of the treated firms range from 122 to 187; The number of the control firms range from 53 to 87. 
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Table D2: The mean treatment effects from the fixed-effects DID models for the defined 5-years treatment period starting at individual 

treatment start, the sample “successful firms” vs. “unsuccessful firms” 

Outcome variable 

One treatment 

year 

Two treatment 

years 

Three treatment 

years 

Four treatment 

years 

Five treatment 

years Year effects 

Industry-

year effects 

CO2 emissions (log) -0.0856 -0.0227 0.0343 -0.0589 -0.1017 Yes Yes 

CO2 emission intensity (log) -0.0494 0.0228 0.0395 -0.0708 -0.0411 Yes Yes 

No. of observations 2956 3068 3120 2833 2660   

Energy purchase incl. electricity (log) -0.0212 -0.0598 -0.0083 -0.1241 -0.1563 Yes Yes 

Energy intensity incl. electricity (log) 0.0190 -0.0073 -0.0386 -0.1656 -0.1360 Yes Yes 

Electricity purchased on the grid (log) -0.0927 -0.1559 -0.1124 -0.3059** -0.4327*** Yes Yes 

Electricity generated on the site (log) 0.4779* 0.4362* 0.4081‡ 0.3863 0.4637‡ Yes Yes 

Coal purchase (log) 0.0208 0.1352 0.1413 0.1007 -0.1548 Yes Yes 

Clean fuel and energy purchase (log) -0.1472 -0.0761 0.1018 0.1687 0.1200 Yes Yes 

No. of observations 3121 3233 3332 3006 2851   

Fixed capital (log) -0.0022 -0.0081 0.0061 -0.0179 0.0230 Yes Yes 

No. of observations 4922 5186 5334 5176 4848   

        
Notes:        
1. ***p <= 0.01, **p <= 0.05, *p <= 0.1, ‡p <= 0.15.       
2. In total, the sample consists of 266 treated firms and 201 control firms.      
3. The numbers of the treated and control firms in the matched sample depend at which point of time the average treatment effects were calculated.  
4. In the matched sample, the number of the treated firms range from 122 to 187; The number of the control firms range from 53 to 87.   
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Table D3: The mean annual treatment effects from the fixed-effects DID models, the sample of “successful firms” vs. “unsuccessful 

firms” 

Outcome variable 

1st 

treatment 

year 

2nd treatment 

year 

3rd 

treatment 

year 

4th 

treatment 

year 

5th treatment 

year 

Year 

effects 

Industry-

year 

effects 

No. of 

control 

firms 

No. of 

treated 

firms 

No. of 

observations  

CO2 emissions (log) -0.1821 -0.2159 0.0019 -0.0750 -0.2567‡ Yes Yes 53 122 2660 

CO2 emission intensity (log) -0.0765 0.0515 0.0590 -0.0117 -0.2211‡ Yes Yes 53 122 2660 

Energy purchase incl. electricity (log) -0.1547 -0.0900 -0.2179 -0.0407 -0.2993* Yes Yes 55 129 2851 

Energy intensity incl. electricity (log) -0.0864 -0.0729 -0.2225 -0.0249 -0.2755* Yes Yes 55 129 2851 

Electricity purchased on the grid (log) -0.2883** -0.4463***  -0.4451 ** -0.4402** -0.6736** Yes Yes 55 129 2851 

Electricity generated on the site (log) 0.4178 0.2724 0.2724 0.8273** 0.6279 Yes Yes 55 129 2851 

Coal purchase (log) -0.2594 0.1636 -0.1790 -0.1789 -0.1664 Yes Yes 55 129 2851 

Clean fuel and energy purchase (log) -0.0096 0.1996 0.2611 0.1071 0.0742 Yes Yes 55 129 2851 

Fixed capital (log) -0.0171 -0.0193 -0.0163 0.0114 0.0230 Yes Yes 87 187 4848 

           

Notes:           

1. ***p <= 0.01, **p <= 0.05, *p <= 0.1, ‡p <= 0.15.        

2. In total, the sample consists of 266 treated firms and 201 control firms.         
3. The numbers of the treated and control firms in the matched sample depend at which point of time the average treatment effects 

were calculated.     
4. In the matched sample, the number of the treated firms range from 122 to 181; The number of the control firms range 

from 53 to 74.      
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