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Abstract

We show that several of the most important economic models of climate change produce

climate dynamics inconsistent with the current crop of models in climate science. First, most

economic models exhibit far too long a delay between an impulse of CO2 emissions and warm-

ing. Second, few economic models incorporate positive feedbacks in the carbon cycle, whereby

carbon sinks remove less CO2 from the atmosphere, the more CO2 they have already removed

cumulatively, and the higher is temperature. These inconsistencies affect economic prescriptions

to abate CO2 emissions. Controlling for how the economy is represented, different climate mod-

els result in significantly different optimal CO2 emissions. A long delay between emissions and

warming leads to optimal carbon prices that are too low and too much sensitivity of optimal

carbon prices to the discount rate. Omitting positive carbon cycle feedbacks also leads to op-

timal carbon prices that are too low. We conclude it is important for policy purposes to bring

economic models in line with the state of the art in climate science.
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1 Introduction

Climate change is arguably the quintessential dynamic problem in economics. Carbon dioxide

resides in the atmosphere for centuries after it is emitted, while the climate system operates on

timescales ranging from seconds to millennia. Presumably climate dynamics must therefore be

accurately represented in economic models of climate change, if appropriate policy prescriptions are

to be made. But do economic models get climate dynamics right? To the extent that they don’t,

does it matter?

This paper aims to provide some answers to these two questions. First, we draw to the attention

of the economics community some key inconsistencies between how leading economic models of

climate change represent climate dynamics and how the current generation of climate science models

does. Second, we explore the economic implications of these inconsistencies. Using the economic

module of Nobel prize winner William Nordhaus’ DICE model as a consistent representation of the

economy, we quantify how different models of the climate system affect optimal CO2 prices/taxes,

CO2 emissions and temperatures.

Section 2 elaborates on how the leading economic models of climate change fail to conform to

climate science models and provides an explanation of the underlying dynamics we see in the climate

science models. We select six economic models – the three most influential integrated assessment

models or IAMs, together with three analytical models from prominent recent papers – and test

how their climate modules respond in two experiments, compared with a large sample of 256 climate

science models. The first test/experiment is of how fast and how far temperature rises in response

to a CO2 emission impulse. We show that the climate science models uniformly heat up very quickly

to a constant, steady-state level, whereas the economic models heat up slowly and in some cases
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very slowly, and do not attain a steady-state temperature within two centuries. The second test

is of how absorption of CO2 by terrestrial and especially ocean carbon sinks changes as a function

of how much CO2 carbon sinks have already absorbed cumulatively, and of temperature. We show

that Earth System models exhibit diminishing marginal uptake of CO2 by carbon sinks with respect

to atmospheric CO2, which in turn is proportional to both cumulative CO2 uptake by carbon sinks,

and temperature. These constitute positive feedbacks in the carbon cycle. By contrast, most of the

economic models exhibit increasing marginal uptake.

Section 3 offers a general framework to understand the models of the carbon cycle and warming

process featured in these two experiments, both from climate science and economics. This framework

enables us to decompose the dynamic temperature response to a CO2 emission impulse in the models

into the dynamic response of (i) the atmospheric CO2 concentration and (ii) temperature. This

decomposition demonstrates that the economic models vary widely in how fast a CO2 emission

impulse decays and how much is removed from the atmosphere in the long run. It also shows that

the response of atmospheric CO2 in the economic models generally differs from the representative

climate science model. In particular, most models remove CO2 from the atmosphere too slowly at

first. The second part of the decomposition shows that almost all of the economic models exhibit

too much temperature inertia in response to elevated atmospheric CO2.

In Section 4, we move on to exploring the economic implications of different representations

of the climate system, i.e. we turn to whether any of this matters for climate policy. We couple

various models of the climate system with a common economic module, namely that of DICE. This

is sufficient to illustrate in controlled conditions that different climate models result in significantly

different optimal CO2 emissions, concentrations and temperatures, both on emissions paths that

maximise social welfare and on emissions paths that minimise CO2 abatement costs subject to a

2◦C warming constraint (per the UN Paris Agreement on Climate Change).

Since the various climate models differ in multiple ways, Section 5 isolates the effects of (i)

too long a delay between emissions and warming and (ii) failing to simulate positive carbon cycle

feedbacks. On the first, we find a long delay between an emission impulse and warming leads to

optimal carbon prices that are too low. It also implies optimal carbon prices are too sensitive to the

discount rate, since the costs of global warming are erroneously placed too far in the future. On the

second, failing to simulate positive carbon cycle feedbacks also leads to optimal carbon prices that
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are too low. The effect is larger when cumulative CO2 uptake and temperature are high and overall

it is of comparable size to a long delay. Lastly it is worth noting that we specifically find DICE

heats up too much in the long run and this contributes to the false impression that it is infeasible

to limit warming to 2◦C as mandated by the UN Paris Agreement.

Section 6 concludes and offers a discussion, including recommendations on how economists

should proceed with representing the climate system in their models, depending on the complexity

and purpose of those models.

2 Two key tests of climate dynamics

Perhaps contrary to popular belief, the temperature response to a CO2 emission impulse in climate

science models is fast. Figure 1 shows this. Peaking around ten years after the emission impulse,

temperature is then permanently elevated. The response of the models resembles a step function.

To produce this figure, we recreated a well-known experiment in climate science (Ricke and Caldeira,

2014), which has also been recommended by the US National Academy of Sciences as a key test

of the consistency of economic models of climate change with current understanding in climate

science (National Academies of Sciences, Engineering, and Medicine, 2017). We used reduced-form

representations of 16 carbon cycle models and 16 atmosphere-ocean general circulation models to

generate a set of 256 climate science models, each of which maps CO2 emissions on to global mean

surface temperature.1 In this particular experiment, each model is subjected to an instantaneous

emission impulse of 100 gigatonnes of carbon. To put this in context, 100GtC (≈ 367GtCO2) is

equivalent to about ten years of CO2 emissions from burning fossil fuels, at current levels (Le Quéré

et al., 2018). This emission impulse is released in the models when the background atmospheric

CO2 concentration is 389 parts per million, which was the level observed in 2010.2 The resulting

distribution of model responses is the shaded area. Appendix A contains further details of the

experiment.
1This set corresponds with the so-called CMIP5 ensemble, after the 5th Coupled Model Intercomparison Project

of the World Climate Research Programme.
2https://data.giss.nasa.gov/modelforce/ghgases/Fig1A.ext.txt
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Figure 1: Dynamic temperature response of 256 climate science models (the CMIP5 ensemble) and
six economic models to an instantaneous 100GtC emission impulse against an initial background
atmospheric CO2 concentration of 389ppm. The temperature response of the economic models is
much slower than the climate science models. After 200 years, the temperature response of the
economic models is often well outside the range of the climate science models.
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Why does the temperature response to a CO2 emission impulse resemble a step function? It is

due to two natural processes represented in climate science models almost exactly offsetting each

other (see e.g. Matthews et al., 2009). One is the process of warming in response to an increase

in atmospheric CO2. The other is the process of a CO2 emission impulse being removed from

the atmosphere by ocean and terrestrial carbon sinks. Together these determine the temperature

response to a ramp change in CO2 emissions:

∆Tt
∆E0

=
t∫

0

∆Tt
∆Ms

∆Ms

∆E0
ds, (1)

where ∆Tt/∆Ms is temperature change per unit increase of atmospheric CO2 and ∆Ms/∆E0 is the
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increase in atmospheric CO2 per unit of emissions. ∆Tt/∆Ms increases slowly, at a decreasing rate,

because the oceans take up heat and slowly bring the system into equilibrium with an injection of

energy. This is the widely known phenomenon of thermal inertia. Less well known, however, is that

this thermal inertia is almost exactly offset by ∆Ms/∆E0 decreasing slowly, also at a decreasing

rate, because of the slow absorption of atmospheric CO2 by carbon sinks, principally the oceans.

The reason why these processes almost exactly offset each other is thought to be that they are

linked by the same mixing of surface and deep ocean waters (Matthews et al., 2009; Solomon et

al., 2009; Goodwin et al., 2015; MacDougall and Friedlingstein, 2015). Dietz and Venmans (2019)

provide further background.

Compared with the climate science models, Figure 1 shows that the climate modules contained

in leading economic models of climate change do not exhibit the same behaviour. In particular,

there is far too much delay between the injection of CO2 and the resulting peak in warming in

almost all the economic models. Thereafter, temperature begins to decrease again in many of the

economic models, which is also contrary to the climate science models. For this part of the figure,

we gathered the three most influential quantitative IAMs, namely DICE, FUND and PAGE.3 As

an example of their policy application, these models are used in the United States to estimate

the social cost of carbon – the marginal damage cost of CO2 – for the purposes of cost-benefit

analysis of federal regulations (Interagency Working Group on Social Cost of Carbon, 2013). We

include both the 2013 and 2016 iterations of the DICE model due to their divergent behaviour, as

the figure clearly shows. We complement these three IAMs with three leading analytical climate-

economy models published in recent years (Golosov et al., 2014; Gerlagh and Liski, 2018; Lemoine

and Rudik, 2017). Of these, the model of Golosov et al. is particularly widely used. We implement

the same experiment, injecting 100GtC into the models against a background atmospheric CO2

concentration of 389ppm.4 The temperature response peaks after 55 years in DICE 2013, 68 years

in PAGE and 75 years in the model of Gerlagh and Liski (GL18). In the central case studied by

Lemoine and Rudik (LR17) it takes 92 years, in FUND it takes 128 years and in DICE 2016 it takes

180 years. The only model that does not simulate a long delay is that of Golosov et al. (GHKT14),
3We include both DICE 2013 (Nordhaus, 2014) and DICE 2016 (Nordhaus, 2017), FUND3.11

(https://github.com/fund-model/MimiFUND.jl) and PAGE09 (Hope, 2013).
4All climate science and economic models have an equilibrium climate sensitivity of 3.1◦C for this experiment. See

Appendix A.
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which assumes no delay in the temperature response a priori. This turns out to be a reasonable

approximation.

In Figure 2, we move on to consider another key aspect of the climate response to CO2 emissions:

as the atmospheric CO2 concentration increases, carbon sinks become less effective at removing

CO2 from the atmosphere. As the oceans warm up, they keep less CO2 in solution and more stays

in the atmosphere, thus further increasing temperature. CO2 also reacts with seawater to form

carbonic acid. This releases hydrogen ions, which combine with carbonate to form bicarbonate.

This increases ocean acidity, destroys phytoplankton and the ability of the oceans to absorb carbon

(Revelle and Suess, 1957). In addition, climate change is expected to reduce net uptake of CO2

by plants and changes to the ocean circulation could also reduce CO2 uptake (Friedlingstein et al.,

2006). These processes constitute positive feedbacks in the carbon cycle (Collins et al., 2013).5

Most economic models of climate change do not take these feedbacks into account, however.

Rather they assume that the rate of removal of a CO2 emission impulse is independent of the

background concentration of atmospheric CO2. The exceptions are FUND and PAGE, both of which

incorporate feedbacks from carbon sinks to atmospheric CO2/warming. To evaluate the six economic

models in this regard, we compare them with the FAIR (Finite Amplitude Impulse Response) model

(Millar et al., 2017). Again, this comparison was identified by the National Academy of Sciences as

a key test of the consistency of economic models of climate change with current understanding in

climate science (National Academies of Sciences, Engineering, and Medicine, 2017). FAIR takes the

same model structure contained in the 256 climate science models used above and introduces simple

feedbacks from cumulative CO2 uptake by carbon sinks and from temperature to reduced marginal

uptake of atmospheric CO2 by carbon sinks (see Section 3 for an exact description). FAIR was built

to reproduce the behaviour of complex Earth System models and was widely used by IPCC in its

recent Special Report on Global Warming of 1.5◦C (Rogelj et al., 2018).

We calibrate the FAIR model to the mean climate science model depicted in Figure 1. We then

run FAIR under a scenario of constant 2015 greenhouse gas emissions and plot yearly uptake of CO2

by carbon sinks as a function of the atmospheric CO2 concentration (Appendix A contains further

details of this experiment). Without the carbon cycle feedbacks, yearly (i.e. marginal) removal
5Not included here are further positive greenhouse gas feedbacks such as permafrost thawing, which tend instead

to be classed as tipping points in the climate system (Lenton et al., 2008).
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of CO2 would be proportional to atmospheric CO2, simply due to Henry’s law.6 This explains

why, in almost all of the economic models, there is an increasing relationship between atmospheric

CO2 and marginal CO2 removal.7 However, saturation of the ocean carbon sink, as well as other

climate impacts on the effectiveness of carbon sinks, offsets this. In FAIR, this countervailing effect

is large enough to produce a decreasing relationship between atmospheric CO2 and marginal CO2

removal overall. Atmospheric CO2 is proportional to cumulative CO2 uptake by carbon sinks and

to temperature, which are the underlying drivers of the effect. The one economic model in which

this is also the case is FUND, with its substantial carbon cycle feedback.

Figure 2: Yearly uptake of CO2 by carbon sinks as a function of atmospheric CO2 in FAIR and six
economic models under constant 2015 greenhouse gas emissions. Each marker represents five years.
FAIR shows yearly uptake decreases, while the economic models have it increasing, except FUND.
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6The amount of dissolved gas in a liquid (i.e. the oceans) is proportional to its partial pressure above the liquid
(i.e. in the atmosphere).

7This is easiest to see in the case of a one-box carbon cycle, such as that of Lemoine and Rudik (2017). Ṁ = E−δM ,
where E stands for the flow of emissions and δ is the decay/removal rate. Yearly uptake δM is linearly proportional
to M . In models with multiple boxes like DICE 2016, yearly uptake tends to increase at a decreasing rate due to the
growing effect over time of the slow-decaying boxes. See Section 3 for further details.
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There is reason to believe these two discrepancies between the current crop of climate science

models and the leading economic models of climate change could matter for policy prescriptions.

First, given the centrality of discounting in climate change economics (Arrow et al., 2013; Gollier,

2012; Nordhaus, 2007; Stern, 2007), the fact that economic models underestimate warming in the

near future in response to a CO2 emission impulse could significantly impact the welfare evalua-

tion of emissions abatement responses. According to the climate science models, CO2 emissions

elevate temperatures almost immediately. Avoiding those emissions would therefore pay an almost

immediate dividend. Second, ignoring the diminishing marginal effectiveness of carbon sinks under-

estimates the climate response to CO2 emissions in the long run, which again impacts the welfare

evaluation of emissions abatement responses.

3 Models of the carbon cycle and temperature dynamics

How do the models used in the previous section – both the climate science models and the economic

models – actually work? In this section, we offer a general framework for understanding this.

The framework enables us to decompose the dynamic temperature response to a CO2 emission

impulse in the models into the dynamic response of (i) the atmospheric CO2 concentration and (ii)

temperature, just as in the formula for the TCRE (1). By describing the models in more detail, we

also set the scene for our subsequent economic analysis, which is based on coupling different climate

models with the DICE economic module.

Linear models of the carbon cycle

Most simple models of the carbon cycle partition the system into a series of reservoirs or boxes,

between which carbon is exchanged. The diffusion of carbon between n different boxes (e.g. the

atmosphere, biosphere, upper and lower parts of the oceans) can be modelled by a system of n

difference equations of the form

mt = Amt−1 + bEt, (2)

where the vector mt contains the stocks of carbon in each of the n boxes at the end of period t and

the scalar Et denotes CO2 emissions during period t. A is a matrix whose elements describe the

speed of diffusion between the boxes. The vector b contains the shares of emissions that enter each
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of the boxes. As the matrix A and the vector b are constant, (2) corresponds to a linear carbon

cycle.

Define the aggregate stock of atmospheric carbon as Mt ≡ d′mt. Then

Mt = d′
(

AtM0 +
t∑

s=1
At−sbEs

)
, (3)

where M0 is the initial stock of atmospheric carbon. We use spectral decomposition (see Appendix

B) to obtain the response function

∆Mt =
t∑

s=1

n∑
i=1

ψiλ
t−s
i ∆Es, (4)

where the λi ∈ {0, 1} are the eigenvalues of A in decreasing order of magnitude and the constants

ψi > 0 are defined in Appendix B. If a proportion of emissions stays in the atmosphere forever,

λ1 = 1 for the box pertaining to that proportion (i = 1) and the impulse response is the sum of the

permanent and transitory components,

∆Mt

∆E1
= ψ1 +

n∑
i=2

ψiλ
t−1
i . (5)

Thus the impulse response function (5) fully determines any linear carbon cycle model with any

number of boxes, which explains why such impulse response functions are commonly used in climate

science to represent and compare models of varying degrees of complexity. Table 1 summarises the

carbon cycle models, which were compared in the previous section, using this general framework.

Joos et al. (2013) is the representative climate science model, i.e. the model used to fit the CMIP5

ensemble (see Appendix A). While the number of boxes varies, most models are based on a structure

in which there is a permanent box, into which roughly one fifth to one sixth of a CO2 emission

impulse flows, a very slowly decaying box and one or more boxes that decay much more quickly.

However, there is significant variation in both the shares of emissions flowing into each box and the

residence time (specifically the half-life) of CO2 in each of the temporary boxes.8

What CO2 dynamics do these different representations give rise to? Figure 3 plots the CO2

8The shares flowing into the three boxes of the GL18 model do not add up to one, since only 94% of box 1 pertains
to the atmosphere (the rest is assumed to be absorbed immediately by the upper ocean). The half-life of CO2 in box
2 of DICE 2016 is much larger than in earlier versions of DICE, or in the other models shown.
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Figure 3: Removal of a 100GtC emission impulse (47ppm CO2) on an initial background concen-
tration of 389ppm in climate science models and six economic models. There are big differences
between the economic models. Few of the economic models approximate the best fit of the climate
science model distribution.
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impulse responses of the various models. The impulse size is 100GtC as in the experiments above.

The figure shows that the differences between the models’ structures and parameters cause signif-

icant differences in their CO2 impulse responses. Some models such as GL18 remove CO2 very

quickly initially. Others such as PAGE remove it very slowly. Over the first 50 years, however,

most economic models remove CO2 more slowly than the best fit of the CMIP5 ensemble. After a

couple of centuries, some economic models such as LR17 remove most of the CO2 emission impulse.

Others such as DICE 2016 and FUND remove relatively little. By then, there does not appear to

be a systematic bias between the economic models and the best fit of CMIP5. Overall, few of the

economic models resemble the best fit of CMIP5, however.

As mentioned in Section 2, the biosphere and especially the ocean carbon sinks become decreas-

ingly effective at removing CO2 from the atmosphere, the more CO2 has been taken up cumulatively
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and the higher is temperature. These positive feedbacks are not captured by the linear carbon cy-

cles included in Table 1, which is clear from the fact that, although the CO2 impulse response in

Equation (5) decays with time, it does not depend on the atmospheric carbon stock. FAIR (Millar

et al., 2017) was designed precisely to simulate these positive carbon cycle feedbacks by extending

the four-box carbon cycle of Joos et al. (2013). The feedbacks in FAIR are based on the linear

relationship that has been observed between the integrated CO2 impulse response over 100 years,

i.e. integrating the area under the curve in Figure 3 from t = 0 to 100, and both temperature and

cumulative CO2 emissions absorbed by carbon sinks:

iIRF100 = rpi + rTT + rC

 t∑
s=pi

Es − (Ms −Mpi)

 (6)

where rpi = 34.4 years is the estimated pre-industrial value of iIRF100. Here ∑t
s=piEs denotes

cumulative CO2 emissions since pre-industrial. The parameters rT = 4.165 years/◦C and rC = 0.019

years/GtC capture the positive feedbacks from rising temperatures and cumulative carbon uptake

respectively. Matching the integrated impulse response function from the carbon cycle model,

modified for the positive feedback with iIRF100, then determines a scaling factor α in FAIR that

slows down the speed at which carbon is removed from the atmosphere (i.e. replace the λi with

λi/α). Appendix A contains further details. Figure 3 shows FAIR’s positive carbon cycle feedbacks

in action: less CO2 is removed from the atmosphere when the emission impulse is against a higher

(year 2100) background concentration of CO2.9

Temperature dynamics

From the carbon cycle models, the change in atmospheric CO2 relative to pre-industrial determines

radiative forcing, i.e. the change in the balance between incoming solar radiation and outgoing

infra-red radiation in the Earth’s atmosphere:

Ft = Fj×CO2

(
logj

Mt

M1750

)
+ FnonCO2,t, (7)

9Corresponding with the year 2100 on the IPCC’s RCP4.5 scenario. RCP stands for Representative Concentration
Pathway. IPCC developed four RCP scenarios for the Fifth Assessment Report (Moss et al., 2010).
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Table 2: Comparing linear temperature-forcing responses
Time step Box 1 Box 2
(years)

DICE 2016 5 9.9%; 25 years 0.2%; 150 years
FUND 1 100%; 31 years
PAGE varies 100%; 24 years
GHKT14 10 n.a. n.a.
GL18 10 100%; 34 years
LR17 1 100%; 50 years
Geoffroy et al. (2013) / best fit CMIP5 ensemble 1 13.5%; 3 years 0.2%; 167 years
Key: The first figure in each cell is the weight of each mode and the second figure the half-life for

each mode. PAGE models regional temperature and calculates global temperature as the
area-weighted average.

where Ft is radiative forcing, Fj×CO2 is a parameter representing the radiative forcing resulting from

j times atmospheric CO2 and FnonCO2,t is radiative forcing from greenhouse gases other than CO2,

and from other forcing agents such as aerosols. In some models such as DICE, FnonCO2,t is exogenous.

In FUND and PAGE, FnonCO2,t is determined endogenously by modelling the dynamics of some of

the other greenhouse gases, such as methane and nitrous oxide. Either way, the contribution to

total radiative forcing of gases/drivers other than CO2 is non-trivial, of the order of 25% currently

(IPCC, 2013). The concave, logarithmic relationship between radiative forcing and atmospheric CO2

captures the fact that the absorption of radiation in CO2’s band becomes progressively saturated.

The temperature response to forcing is modelled by up to two temporary boxes and can be

written analogously to (4) as

∆Tt =
t∑

s=1

2∑
i=1

ψTi λ
T t−s
i ∆Fs, (8)

where ψTi and λTi denote respectively the shares and eigenvalues for the temperature dynamics.

Table 2 summarises the dynamics of the various warming models that map forcing into temperature.

GHKT14 effectively assume that temperature is driven by equilibrium climate sensitivity according

to Arrhenius’ law and do not have any lag between forcing and temperature. GL18 have one box

with a half-life of 34 years. Geoffroy et al. (2013) is the representative climate science model used to

fit the CMIP5 ensemble. Both DICE 2016 and Geoffroy et al. (2013) have two boxes representing the

temperature of the atmosphere/upper oceans and the deep oceans respectively. However, critically

DICE 2016 displays a much more sluggish response of temperature to radiative forcing than Geoffroy

et al. (2013), especially as the fast box of Geoffroy et al. has a half-life of only 3 years.
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Figure 4 uses Equations (7) and (8) to plot the dynamic temperature response of the models to

a constant increase in atmospheric CO2 of 100GtC (47ppm). With the exception of Golosov et al.

(2014), all of the economic models exhibit a more sluggish temperature response than the best fit

of the CMIP5 ensemble. The temperature response of LR17 is particularly slow. After 200 years,

temperature is higher in DICE 2013, DICE 2016 and FUND, while LR17 and PAGE are close to

the best fit of the CMIP5 ensemble at that moment. The GHKT14 model shows an immediate,

permanent increase in temperature. It over-predicts temperature compared with the best fit of the

CMIP5 ensemble.

Figure 4: Dynamic temperature response of best-fit climate model and six economic models to a
constant increase in atmospheric CO2 of 100 GtC (47ppm CO2). The economic models respond
much more slowly to elevated CO2 than the best-fit climate model, except GHKT14.
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We emphasise the difference between this figure and Figure 1, which plots the dynamic tem-

perature response of the models to a 100GtC emission impulse. Using Equations (5), (7) and (8),
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Figure 1 plots
∆Tt
∆E1

= F2xCO2

ln 2

t∑
s=1

2∑
i=1

ψTi λ
T t−s
i

1
Ms

ψ1 +
n∑
j=2

ψjλ
s
j

 , (9)

i.e. carbon uptake as plotted in Figure 3 is convoluted with temperature inertia as plotted in Figure

4. The way in which temperature inertia almost exactly offsets dynamical carbon uptake in the

best fit of the CMIP5 ensemble is visually clear from comparing Figures 3 and 4. That is why the

temperature response in Figure 1 resembles a step function.

4 Economic policies with different climate models

In this and the following section, we evaluate what difference the model of the climate system makes

for economic policies. We focus on two such policies: (i) optimal emissions that maximise social

welfare and (ii) a representative policy run in the context of the United Nations climate framework

that limits warming to 2◦C at minimum discounted abatement cost. The latter path is sometimes

described as an exercise in cost-effectiveness analysis (as opposed to (i), which is an exercise in

cost-benefit analysis) and is a core use of IAMs by IPCC (see Clarke et al., 2014).10

To perform this evaluation, we need to make a controlled comparison, in which the models are

identical in all respects except how they represent the dynamics of the carbon cycle and warming

process. Control is achieved by using the DICE 2016 economic and welfare modules as a common

base, and coupling it with different models of the climate system (Table 3).11 We drop the FUND

and PAGE models here, due to the practical difficulties of coupling these more complex IAMs with

the DICE 2016 economy.

Figure 5 plots welfare-maximising carbon prices, emissions and temperatures (left column) from

DICE 2016, DICE-FAIR-Geoffroy (i.e. the representative or benchmark climate science model, cou-

pled with the DICE economy), DICE-GHKT14, DICE-GL18 and DICE-LR17. It is immediately

apparent that the models differ significantly in their welfare-maximising paths. Initial carbon prices

range from $11/tCO2 in DICE-LR17 to $57 in DICE-GHKT14, with an initial carbon price of $30

in the benchmark DICE-FAIR-Geoffroy model, and $37 in standard DICE 2016. These differences
10Abatement cost minimisation subject to a temperature constraint is the same as welfare maximisation subject to

a temperature constraint and ignoring climate damages.
11Readers are referred to William Nordhaus’ web resources for a comprehensive description of the

DICE 2016 economic module and, unless otherwise specified, the version we use is unchanged. See
https://sites.google.com/site/williamdnordhaus/dice-rice.
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Table 3: List and description of models used for economic evaluation
Model Description
DICE 2016 Standard DICE 2016 economy and climate
DICE-GHKT14 DICE 2016 economy with the Golosov et al. (2014) climate model
DICE-GL18 DICE 2016 economy with the Gerlagh and Liski (2018) climate model
DICE-LR17 DICE 2016 economy with the Lemoine and Rudik (2017) climate model
DICE-FAIR-Geoffroy DICE 2016 economy with the FAIR carbon cycle and

the Geoffroy et al. (2013) warming model
DICE-Joos-Geoffroy DICE 2016 economy with the Joos et al. (2013) carbon cycle

and the Geoffroy et al. (2013) warming model

grow over time, such that by 2100 the range is $77-358/tCO2.

Welfare-maximising CO2 emissions and temperatures also vary widely. Initial CO2 emissions

range from 33GtCO2 in DICE-GHKT14 to 40GtCO2 in DICE-LR17, while in 2100 they range from

nearly zero to 50GtCO2. Optimal warming by the end of the century ranges from just 2.0◦C in

DICE-LR17 to 4.0◦C in DICE-GHKT14. Optimal warming in the benchmark DICE-FAIR-Geoffroy

model is 3.0◦C in 2100. Notice that optimal warming in 2100 is lowest in DICE-LR17, despite this

model having the lowest carbon prices and the highest emissions. This is directly attributable

to its particularly slow temperature response to elevated atmospheric CO2, as shown in Figure 4.

Notice also the high initial starting temperature in DICE-GHKT14. Temperature is only implicit in

GHKT14, but can be backed out from their assumptions about the atmospheric carbon stock and

damages. Their assumption of no delay between emissions and warming, coupled with exogenous

radiative forcing from non-CO2 greenhouse gases, leads to this artefactual result.

Figure 5 also compares models on a path that limits warming to 2◦C at minimum discounted

abatement cost (right column). Note that for these runs we substitute standard DICE 2016 exoge-

nous emissions of CO2 from land-use change and forestry with corresponding emissions from the

IPCC’s RCP2.6 scenario12, which is consistent with limiting warming to 2◦C. We do the same for

exogenous radiative forcing from other greenhouse gases and atmospheric agents. We provide some

further analysis of this issue below.

Similar to the models’ welfare-maximising paths, we observe large differences in their 2◦C cost-

minimising paths. Naturally, given the warming constraint, the differences are particularly evident

in carbon prices and emissions. Initial carbon prices vary from $13/tCO2 in DICE-LR17 to $143
12Specifically when combined with the SSP1 socio-economic scenario; see Moss et al. (2010).
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Figure 5: Welfare-maximising (left) and cost-minimising (right) paths from different climate models
coupled with the DICE 2016 economy. Top row – carbon prices; middle row – CO2 emissions; bottom
row – warming. The models produce very different carbon price paths, resulting in very different
CO2 emissions and temperature paths.
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in standard DICE 2016. By mid-century the range of carbon prices peaks at $406/tCO2 between

these models. Initial CO2 emissions range from 26GtCO2 in DICE 2016 to 40GtCO2 in DICE-LR17.

Limiting warming to 2◦C is infeasible in DICE-GHKT14, for the reasons mentioned above. In order

to limit warming to 2◦C, emissions must eventually be negative in all models, but the time at which

‘net zero’ is crossed ranges from 2050 in DICE 2016 to just after 2100 in DICE-LR17. Although
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warming is limited to 2◦C, the temperature trajectory shows significant variation across the models,

particularly in mid-century. The range is 1.2-1.8◦C in 2050, for instance.

5 Warming delay and further economic analysis

While Figure 5 illustrates that climate dynamics matter for economic policies, it does not fully

illuminate the role of the issues identified in Section 2, namely the excessive delay between a CO2

emission impulse and warming, and the omission of diminishing marginal CO2 uptake with respect

to warming. These issues are explored further in Tables 4 and 5.

To isolate the effect of excessive delay between a CO2 emission impulse and warming, we con-

struct two further artefact models, built on the DICE-Joos-Geoffroy (and DICE 2016) structure.

These two models exhibit the same long-run temperature response to a CO2 emission impulse as

DICE-Joos-Geoffroy, but reach that long-run response at very different speeds; far too slowly in

comparison with the climate science models, more in line with the economic models. The reason we

construct these two further models is that, even with the same equilibrium climate sensitivity, the

different climate models compared above exhibit not only different short- and medium-run temper-

ature dynamics, they also exhibit different long-run temperature responses (as is clear from Figure

1), due to differences in long-run CO2 uptake (as shown in Figure 3). The new ‘Delay 56’ model is so

called, because it exhibits a delay between the CO2 emission impulse and peak warming of 56 years,

rather than c. 10 years in DICE-Joos-Geoffroy, while exhibiting a similar integrated temperature

impulse response over the long run. The ‘Delay 112’ model exhibits a corresponding warming delay

of 112 years. As explained in Appendix B, these new models are created by increasing the effective

heat capacity of the ocean in the Geoffroy et al. (2013) model, whilst decreasing the rate of removal

of CO2 from the three temporary boxes in the Joos et al. (2013) carbon cycle.

Using these new models, Table 4 shows that on the welfare-maximising path an excessive delay

leads to lower carbon prices throughout. The 2020 carbon price falls from $27/tCO2 for the short

delay (DICE-Joos-Geoffroy) to $23 for the 56-year delay and $18 for the 112-year delay (compare

rows 2-4). These differences grow over the course of the century. By 2100, moving from a 10-year

delay to a 112-year delay reduces the optimal carbon price by $75, or 38%. With lower carbon prices

naturally come higher CO2 emissions, but not higher temperatures, since a longer delay means that
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it takes much longer for the warming effect of these additional emissions to be realised. Table

5 shows that on the 2◦C cost-minimising path an excessive delay leads to lower carbon prices in

2020 and 2050. The effect is somewhat smaller than on the optimal path, since the temperature

constraint binds and leaves less room for manoeuvre. Lower carbon prices again result in higher

emissions, but the delay means this does not translate into higher temperatures; on the contrary.

An implication of these results on excessive delay is that the optimal path may be less sensitive

to assumptions about the discount rate than previously thought. Table 6 shows that this is indeed

the case. We ran DICE-Joos-Geoffroy and the Delay 56 and 112 variants under standard DICE

assumptions about the primitives of the social rate of time preference (a pure rate of time preference

of 1.5% and an elasticity of marginal utility of consumption of 1.45), and assuming the social planner

uses lower values (PRTP=0.1%; elasticity of marginal utility of 1). We call the latter ‘public’

discounting.13 The parameter values are the same as in the Stern Review (Stern, 2007). With a

representative initial growth rate of global average consumption per capita of 2.5%, the standard

DICE discount rate is 5.1% while the ‘public’ discount rate is 3.5%. Table 6 shows that the increase

in the 2020 optimal carbon price brought about by switching from standard to public discounting is

68% in Delay 112, but only 50% in DICE-Joos-Geoffroy with the short delay. In 2100 the increases

are 51% and 38% respectively.

We now analyse how positive feedbacks in the carbon cycle affect model paths, by comparing

DICE-FAIR-Geoffroy and DICE-Joos-Geoffroy (rows 1 and 2). Recall the difference between these

models is that DICE-FAIR-Geoffroy modifies the four-box carbon cycle of Joos et al. (2013) to

incorporate feedbacks from both cumulative carbon uptake and temperature to the rate of removal

of atmospheric CO2 (see Section 3). So DICE-FAIR-Geoffroy includes the feedbacks, while DICE-

Joos-Geoffroy does not.

Introducing the positive feedbacks to the carbon cycle results in a higher optimal carbon price.

In 2020, the optimal carbon price in DICE-FAIR-Geoffroy is $29.68/tCO2, $2.70 above the optimal

carbon price in DICE-Joos-Geoffroy. Hence the effect is not quantitatively large in the short run.

However, it is in the nature of the carbon cycle feedbacks that they have a larger effect, the higher is

the atmospheric carbon stock/temperature, so we see the gap between the models’ optimal carbon
13We assume private agents keep the standard DICE parameters for investment/consumption decisions, but that

the social planner sets carbon prices using the lower rate (van der Ploeg and Rezai, 2019).
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prices widening steadily until by 2100 it is $83/tCO2. Higher optimal carbon prices result in lower

emissions in DICE-FAIR-Geoffroy and this in turn results in lower 21st-century warming.14 Reduced

CO2 uptake by carbon sinks reduces the cumulative emissions budget for limiting warming to 2◦C

in DICE-FAIR-Geoffroy, so the 2◦C cost-minimising carbon price is also higher, resulting in lower

emissions and, at least in this century, lower temperatures.

Tables 4 and 5 show that DICE 2016 yields higher carbon prices than the benchmark climate

science model, DICE-FAIR-Geoffroy (compare rows 1 and 5), particularly on a 2◦C cost-minimising

path. This leads to lower emissions in DICE 2016, yet temperatures end up being higher. Appendix

C provides some further analysis of what is behind the difference between standard DICE 2016 and

DICE-FAIR-Geoffroy. Three factors are at play, namely differences in: (a) temperature dynamics

between standard DICE 2016 and Geoffroy et al. (2013); (b) removal of atmospheric CO2 between

the DICE 2016 and Joos et al. (2013) carbon cycles, and; (c) assumptions about (non-)diminishing

uptake of atmospheric CO2 between DICE 2016/Joos et al. (2013) and FAIR. In Appendix C, we

apportion the difference between (a)-(c) and find that the main driver of different temperatures is

(a) the tendency of DICE 2016 to heat up too much in the long run.

Lastly, previous work with DICE 2016 found it is infeasible to limit warming to 2◦C (Nordhaus,

2017).15 Our analysis suggests this is not the case when the climate system is appropriately re-

sponsive to CO2 emissions. Figure 5 and Table 5 show that doing so is feasible in DICE 2016, but

very expensive, while it is also feasible in DICE-FAIR-Geoffroy, and much less expensive. Another

reason why limiting warming to 2◦C has been infeasible in DICE 2016 is the assumption in previous

studies of one-size-fits-all exogenous emissions of CO2 from land-use change and forestry, and ex-

ogenous radiative forcing from other greenhouse gases and atmospheric agents.16 When DICE 2016

is run under standard DICE 2016 exogenous emissions/forcing, limiting warming to 2◦C is indeed

infeasible. It remains feasible in DICE-FAIR-Geoffroy, but much more expensive than under our

preferred scenario for exogenous emissions/forcing (see Appendix C).
14Warming is higher in DICE-FAIR-Geoffroy in the longer run, due to the carbon cycle feedbacks’ continuing effect.

The crossing point is 2200 (not shown). In steady state, optimal warming in DICE-FAIR-Geoffroy is exactly 3◦C,
while in DICE-Joos-Geoffroy it peaks at about 2.83◦C.

15Under the constraint of no negative emissions technology in the first several decades.
16One-size-fits-all in the sense of the scenario being invariant to the amount of CO2 being abated in the model.
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6 Discussion

We have investigated how best to fit the dynamic evolution of atmospheric carbon and tempera-

ture in the big Earth System models in climate science. Closely following experimental protocols

developed in climate science, we have used reduced-form impulse response functions to emulate the

behaviour of an ensemble of highly non-linear and large-scale Earth System models. In this sense,

we have been concerned with the most appropriate model reduction techniques.

We have not been concerned with fitting our reduced-form models to historical data. This would

have been a different exercise and the resulting model would be of limited relevance for the analysis

of climate policy today. A model calibrated on historical conditions and designed to reproduce

the behaviour of the pre-industrial climate, or the climate between pre-industrial times and the

more recent past, is not a reliable model of the future climate. One important reason why is that

positive feedbacks in the uptake of atmospheric carbon, studied in some depth in this paper, kick

in more strongly when cumulative carbon uptake and temperature are already high (e.g. Millar et

al., 2017). This partly explains why climate scientists tend to use the dynamic behaviour of Earth

System models in simulation experiments in contemporary and future climatic conditions as their

benchmark when building reduced-form models, not past, observed changes in atmospheric carbon

and temperature.17

We have shown that there is a large amount of variation in the way economic models of climate

change simulate the evolution of the atmospheric carbon stock and temperature. But still the most

prominent IAMs, i.e. DICE, FUND and PAGE, as well as the analytical models put forward by

Gerlagh and Liski (2018) and Lemoine and Rudik (2017), are unified in one feature. They show

too sluggish a temperature response to an impulse change in CO2 emissions compared with the

step-like response of the large Earth System models and the reduced-form representations of those

Earth System models used by climate scientists (e.g. Geoffroy et al., 2013; Joos et al., 2013; Millar et

al., 2017). Unique among the economic models, Golosov et al. (2014) have an instant temperature

response to changes in the atmospheric carbon stock, since they do not allow for a temperature lag

at all. We have decomposed this sluggish temperature response into two underlying discrepancies
17That being said, Millar et al. (2017) show that the FAIR model, with its flexible representation of positive carbon

cycle feedbacks, closely tracks observed global mean temperature when run with estimated historical greenhouse gas
emissions.
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between the economic models and their climate science counterparts. First, most economic models

remove CO2 from the atmosphere too slowly initially. Second, most economic models exhibit too

much temperature inertia. The dominant half-life for the temperature dynamics of climate science

models is 3 years, whilst for DICE 2016, Gerlagh and Liski (2018) and Lemoine and Rudik (2017),

for instance, these half-lives are 25, 34 and 50 years, respectively. Besides the sluggish temperature

response to CO2 emissions, economic models also imply that the marginal removal of atmospheric

CO2 rises with atmospheric CO2 (except for FUND), whilst carbon cycle models in climate science

suggest that this removal decreases with atmospheric CO2 (Millar et al., 2017).

As a result, the models of the climate that prevail in the economic literature yield misleading

policy implications. Controlling for the specification of the economy and welfare using the DICE

2016 economic module, we found that the climate modules in economic models delivered carbon

prices, emissions and temperatures that differed significantly from the benchmark FAIR model from

climate science. We explored both welfare-maximising carbon prices and carbon prices that ensure

a 2◦C temperature target is achieved whilst minimising the costs of abatement. Further exploring

the causes of these differences, we found that a sluggish temperature response to CO2 emissions –

excessive delay – leads to carbon prices that are too low and that are too sensitive to the choice of

discount rate, since the costs of global warming are erroneously placed too far in the future. We

also found that failing to account for positive feedbacks in the carbon cycle leads to carbon prices

that are too low, especially when atmospheric CO2 is high.

We conclude economic models of climate change are out of line with the state of the art in

climate science. We therefore recommend the climate modules in economic models be replaced.

Models of the carbon cycle need to incorporate positive feedback effects, like FAIR does (Millar

et al., 2017). Models of temperature dynamics need to either be replaced or recalibrated so that

they can reproduce the fast temperature response of Earth System models to CO2 emissions, as the

model of Geoffroy et al. (2013) does. Appendix D provides GAMS code for doing so in DICE. Other

simple models in climate science may do the same job. None of these changes requires significant

complication of existing economic models.

In fact, if future CO2 emissions are not too high, an even simpler model where temperature is

just a linear function of cumulative CO2 emissions has been shown to suffice (Collins et al., 2013).

Appendix E demonstrates this: the climate science models of CMIP5 exhibit an approximately
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linear warming response to cumulative CO2 emissions under various IPCC emissions scenarios.

The linear response requires a step temperature impulse response function and positive carbon

cycle feedbacks (Dietz and Venmans, 2019). Hence Appendix E shows that the economic models

covered in this paper do not generate a linear response. The CMIP5 ensemble gives temperature

at time t as 1◦C plus 1.6◦C per trillion tons of cumulative emissions (TtC) from 2020 onwards

(Stocker et al., 2013).18 Warming from non-CO2 greenhouse gases needs to be added on top. The

slope coefficient of 1.6◦C/TtC is known as the Transient Climate Response to Cumulative Carbon

Emissions (TCRE).19 However, at warming of over 4◦C, this simple relationship may no longer hold

(MacDougall, 2016) and one may need to use a more complicated model, such as FAIR in tandem

with the temperature dynamics model of Geoffroy et al. (2013).

18Some recent studies that have used this simple relationship to derive economically optimal climate policies are
Allen (2016), Brock and Xepapadeas (2017), van der Ploeg (2018), Manoussi et al. (2018) and Dietz and Venmans
(2019).

19The simple formula whereby warming = TCRE x cumulative emissions implies a temperature response function to
a CO2 emission impulse that is approximated by a step function with amplitude equal to the TCRE. The temperature
response function that best fits the CMIP5 ensemble in the experiment reported in Figure 1 has a mean amplitude of
1.72◦C/TtC, while FAIR has a mean amplitude of 1.77◦C/TtC under 2015 conditions. The differences between these
values and the value of 1.6◦C/TtC reported above and due to IPCC is down to the equilibrium climate sensitivity,
which we harmonise to the default value of 3.1◦C in DICE when producing Figure 1. The models synthesised for
IPCC by Stocker et al. (2013) exhibit slightly lower values. Equilibrium climate sensitivity is the largest source of
uncertainty about the TCRE. Matthews et al. (2009) found a 5-95% probability range of 1.0-2.1◦C/TtC, Allen et al.
(2009) found 1.4-2.5◦C/TtC and Gillett et al. (2013) found 0.7-2.0◦C/TtC based on the CMIP5 ensemble. Based on
this and other evidence, IPCC adopted a ‘likely’ range of 1.0-2.1◦C/TtC (Collins et al., 2013).
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A Climate model experiments

Figure 1 plots the dynamic temperature responses of climate science models and economic models

to an instantaneous 100GtC emission of CO2. Each model response is a convolution of the dynamic

response of the atmospheric CO2 concentration to the 100GtC emissions pulse and the dynamic

response of global mean temperature to the resulting atmospheric CO2 concentration trajectory.

The former is simulated using a carbon cycle model, the latter using a model of temperature

dynamics.

The carbon-cycle response is generated by following the experimental protocol of Joos et al.

(2013). The background concentration of CO2 in the atmosphere is initialised on the observed

2010 level, i.e. 389ppm or 829GtC.20 We assume a pre-industrial atmospheric CO2 concentration of

275.8ppm, resulting in an excess concentration of 113.2ppm in 2010.

For each of the 16 carbon cycle models that formed part of the CMIP5 study, the four-box

carbon cycle model of Joos et al. (2013) is used as a reduced-form representation. Joos et al. (2013)

document the fitting procedure and resulting parameter values. The initial excess atmospheric CO2

concentration of 113.2ppm relative to pre-industrial needs to be distributed among the four boxes

of the Joos et al. model. The same need arises for the FAIR model, which shares the same four-box

structure. Moreover, as the Joos et al. model was not designed to reproduce historical removal of

CO2 from the atmosphere (Millar et al., 2017), it is the FAIR model that we use to initialise the

boxes in all of these models. To do this, we feed historical emissions into FAIR from 1890 to 2010.21

This results in the following distribution of the initial excess concentration between the four boxes:

52.9% in box 1; 34.3% in box 2; 11.1% in box 3; 1.6% in box 4.

To keep the atmospheric CO2 concentration constant after 2010, the experimental protocol of

Joos et al. (2013) continues to add emissions. We compute these emissions as follows. The Joos et

al. model implies that

ṁi = ψiE − λimi, (10)

where mi is the carbon stock in each box i, ψi is the proportion of emissions that enter each box

and λi is the rate of removal of CO2 from each box by carbon sinks. Constant atmospheric CO2

20We use a conversion rate of 100GtC = 46.9ppm throughout the paper.
21We obtain emissions between 1890 and 1990 from the EDGAR 1.4 database and between 1990 and 2010 from the

SSP database.
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therefore requires ∑
i

ṁi = 0⇔ E =
∑
i

λimi. (11)

Substituting (11) into (10) gives a solution for decay in each box:

ṁj = ψj

[∑
i

λimi

]
− λjmj . (12)

As time goes by, carbon is transferred from the fast-decaying boxes in the model to the permanent

box and in the steady state all carbon must be in the permanent box (i = 1). The same emissions

path is used in simulations with all the carbon cycle models considered here.

The resulting background scenario is compared to a scenario with the same emissions path, but

with an impulse of 100GtC added to the atmosphere at time zero (the year 2010). The 100GtC is

added to each carbon box in proportion ψi.

The 16 CMIP5 carbon cycle models emulated by Joos et al. (2013) are then combined with

16 CMIP5 temperature models (i.e. atmosphere-ocean general circulation models), which are repre-

sented in reduced form using the model of Geoffroy et al. (2013), as described in their paper. We set

the climate sensitivity equal to 3.1◦C in all models.22 This allows us to focus on temperature inertia

in the climate models. For all models, we use 0.85◦C as initial atmospheric warming relative to

pre-industrial in 2010. The initial lower ocean temperature is 0.22◦C above pre-industrial, obtained

by running FAIR on historical emissions.

FAIR is identical to the model of Joos et al. (2013), except that the residence time of CO2 in each

of the four atmospheric boxes is modified by a parameter α representing carbon cycle feedbacks.

FAIR calculates α as a function of the integrated CO2 impulse response function (iIRF) over the

first 100 years of the model horizon. The assumed relationship between α and iIRF100 in FAIR

has no analytical solution, but can be well approximated by fitting an exponential function, which

results in the following solution:

α = 0.0107 exp (0.0866iIRF100) . (13)
22DICE assumes a climate sensitivity of 3.1◦C. The mean climate sensitivity in Geoffroy et al. (2013) is between

3.05◦C and 3.25◦C, according to how models are aggregated (λ̄ × TCO2x2 = 3.05◦C while λ× TCO2x2 = 3.25◦C).
Default FAIR uses a climate sensitivity of 2.75◦C.

35



We now turn to the economic models included in Figure 1. We take each of these models “off the

shelf”, except that, in order to be consistently compared following the experimental protocol of Joos

et al. (2013), we ensure all the models are initialised on the same atmospheric carbon stock and

atmospheric temperature:

• In DICE 2016, the carbon stocks are initialised on the year 2015, when the atmospheric CO2

concentration is assumed to be 399.4ppm. Hence we reduce the excess carbon content of the

three carbon boxes in DICE 2016 by 9.2% to obtain comparable 2010 initial conditions.23 We

do not change the initial deep ocean temperature in DICE 2016.

• For the PAGE and FUND models, it is most convenient to adjust the timing of the emission

impulse so that the background CO2 concentration is 389ppm – 2008 in FUND, 2009 in PAGE.

• For Golosov et al. (2014), we assume that 51.4% of the excess emissions in 2010 are in the

permanent box and 48.6% are in the slow-decaying box. These numbers are obtained by using

the authors’ initial values in 2000 and running their model on historical emissions between

2000 and 2010.

• Gerlagh and Liski (2018) do not explicitly model temperature. CO2 emissions map on to

atmospheric concentrations and these in turn map directly on to damages. They define a

common adjustment speed of temperature and damages in a one-box model. This gives

Tt+1 = Tt − ε(ECS × log2(Mt/M1850)− T ).

• For Lemoine and Rudik (2017), we can directly impute the initial atmospheric CO2 concen-

tration and temperature.

Figure 2 is based on a different experimental protocol. It shows yearly carbon uptake by sinks as a

function of the atmospheric CO2 concentration for constant emissions of 39.1GtCO2 and constant

non-CO2 forcing of 0.181W/m2, which correspond to 2015 forcing in the SSP database.24 To make

the graph, we use 2015 initial conditions, with 263GtC in the atmosphere (as in DICE) and 0.85◦C
23The CO2 impulse response function is independent of initial conditions and of the post-2010 emissions path in

all models except FAIR, because the initial conditions and post-2010 emissions affect the background scenario and
the impulse scenario (+100GtC) in the same way. The post-2010 emissions path has a small effect on temperature,
however, due to the logarithmic relationship between atmospheric CO2 and radiative forcing.

24Hosted by the IIASA Energy Program at https://tntcat.iiasa.ac.at/SspDb.

36



warming (also as in DICE). For FAIR, we use the same relative distribution among the four boxes

as above and 0.28◦C deep ocean warming.

Figure 3 is generated using exactly the same procedure as Figure 1, but reports the difference

in atmospheric CO2 concentration instead of the difference in temperature.

Figure 4 uses the same background scenario as Figure 1. This is compared to a scenario with a

constant CO2 concentration of 436ppm (398ppm+100GtC) from 2010 onwards.

B Further details on carbon cycle and warming models

B.1 Linear models of the carbon cycle

The linear carbon cycle is described by n difference equations, where mt is a vector whose elements

contain the amount of carbon in each box at time t, A is a square matrix of constants and b is a

column vector. Let d be the vector that maps the contents of the various boxes into the stock of

atmospheric carbon, i.e.

Mt ≡ d′mt = d′
[
AtM0 +

t∑
s=1

At−sbEs

]
.

Spectral decomposition yields A = VΛV−1, where the diagonal matrix contains the eigenvalues in

decreasing order of magnitude along its diagonal and the columns of the n x n matrix V contain the

linearly independent eigenvectors (assuming all eigenvalues are distinct). Given that the columns

of A must sum to one, the first of the n eigenvalues equals 1 and the others are between zero and

one (provided the system is stable). Hence,

Mt = d′V
[
ΛtV−1M0 +

t∑
s=1

Λt−sV−1bEs

]
.

The effect of a change in the emissions path from some reference path on the corresponding change

in the stock of atmospheric carbon is independent of M0 and given by

∆Mt = d′V
t∑

s=1
Λt−sV−1b∆Es.

37



Define d̄ ≡ V′d and b̄ ≡ V−1b, so that

∆Mt =
t∑

s=1

n∑
i=1

ψiλi
t−s∆Es,

where ψi ≡ b̄id̄i are the fractions of emissions going into each of the boxes and the λi are the

eigenvalues of the matrix A. The impulse response function shows the effects of a small impulse in

the first period only and equals ∆Mt
∆E1

=
n∑
i=1

ψiλi
t−1. The first eigenvalue is 1 and captures that a

proportion of emissions ψi stays in the atmosphere forever. We thus write the impulse response as

the sum of its permanent and transitory components, i.e.

∆Mt

∆E1
= ψ1 +

n∑
i=2

ψiλi
t−1.

The FUND model

The FUND carbon cycle model, which is based on Maier-Reimer and Hasselmann (1987), has 5

boxes with shares of emissions flowing into each of them equal to b = (0.13, 0.20, 0.32, 0.25, 0.1)′,

d = (1, 1, 1, 1, 1)′ and A has diagonal elements equal to exp(-1/lifetime), where the lifetimes for the

5 boxes are ∞, 363, 74, 17 and 2 years respectively. These correspond to half-lives of ∞, 252, 51,

12 and 1.4 years respectively.

The Golosov et al. (2014) carbon cycle model: 2 boxes

Golosov et al. (2014) have A =

1 0

0 1− ϕ

, b =

 θL

θ0(1− θL)

 and d =

1

1

 , where 0 < θL <

1 and 1 − θL are the proportions of emissions that flow into the boxes holding the permanent

and transitory components of atmospheric carbon respectively, 0 < θ0 < 1 is the proportion of

atmospheric carbon in the transitory box that decays within the span of a unit of time (i.e. within

a decade), and ϕ > 0 denotes the speed of decay of carbon in the transitory box. Hence Eq. (3)

becomes

Mt = m0(1) + (1− ϕ)tm0(2) +
t∑

s=1

[
θL + θ0(1− θL)(1− ϕ)t−s

]
Es,

where the term in square brackets shows how much of an emission impulse at time s is left in

the atmosphere at time t. Roughly a fifth of carbon stays up in the atmosphere “forever”, half of
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an emission impulse is removed after 30 years, and the remaining carbon in the atmosphere has

a mean life of 300 years. This yields θL = 0.2, θ0 = 0.393 and ϕ = 0.0228. It follows that the

half-life equals ln(0.5)/ ln(0.9772) = 30 decades. The initial values for 2010 are S0(1) = 684 GtC

and S0(2) = 118GtC. Our starting date is 2015, so we update these and use S0(1) = 712GtC and

S0(2) = 159GtC instead.

The DICE 2016 carbon cycle model: 3 boxes

The DICE 2016 carbon cycle of Nordhaus (2017) has three boxes: (1) the atmosphere, (2) the upper

oceans and biosphere, and (3) the lower/deep oceans. The diffusion matrix is

A =


0.88 0.196 0

0.12 0.797 0.001465

0 0.007 0.998535


and b = d = (1, 0, 0)′. No carbon leaves the system, so the elements of the columns of A sum to 1.

The rate of uptake by the biosphere and oceans is independent of the amount of carbon stored in

each box, so positive feedback between atmospheric CO2 and CO2 uptake is ruled out. There is no

direct interchange of carbon between the atmosphere and the lower/deep oceans. The lower/deep

oceans can store a large amount of carbon, but the rate of diffusion into the lower/deep oceans is

only 0.007. The eigenvalues of A are (0.6796, 0.9959, 1) and

V =


0.6991 0.5075 0.3173

−0.7148 0.3002 0.1942

0.0157 −0.8077 0.9282

 ,

so b̄ = (0.5283, 0.8085, 0.6946)′, d̄ = (0.6991, 0.5075, 0.3173)′ and thus the ψi are 37%, 41% and

22%. Since no carbon leaves the boxes, one of the eigenvalues equals 1. The smallest eigenvalue

corresponds to a half-life of 9 years (5 x ln(0.5)/ ln(0.6796)) and the middle one corresponds to a

half-life of 851 years.
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The Gerlagh and Liski (2018) carbon cycle model: 3 boxes

Gerlagh and Liski (2018) have boxes for (i) the atmosphere and the upper oceans, (ii) the biosphere

and (iii) the lower oceans. Since within a decade (their unit of time) carbon mixes perfectly between

the atmosphere and the upper oceans, these are combined into box one. The stock of atmospheric

carbon St is a constant share of the contents of box one, i.e. d = (0.914, 0, 0)′. They have

A =


0.6975 0.2131 0.029

0.1961 0.7869 0

0.1063 0 0.9706


and b = (0.8809, 0.0744, 0.0447)′. The eigenvalues of A are 0.5286, 0.9264 and 1, and we calculate

the corresponding ψi to be 44.5%, 18.2% and 16.2%. The eigenvalues imply that the half-lives for

the two temporary boxes are 90 and 11 years.

The Joos et al. (2013) carbon cycle model: 4 boxes

Joos et al. (2013) use a continuous-time model with one permanent and three transitory boxes to

fit impulse response functions to an ensemble of Earth System model simulations.25 They get

A =



1 0 0 0

0 0.9975 0 0

0 0 0.9730 0

0 0 0 0.7927


,

b = ψ = (0.2173, 0.2240, 0.2824, 0.2763)′ and d = (1, 1, 1, 1)′ on an annual basis. The mean lags for

the temporary boxes are 277, 25 and 3 years. Aengenheyster et al. (2018) also estimate a 4-box

model in continuous time.

The Delay 56 and Delay 112 carbon cycle models use the same values as Joos et al. (2013) for ψ,

but multiply the mean lags by five and ten respectively. In other words, any point on the impulse

response function will be a point on the Delay 56 (112) impact response function five (ten) years

later.
25In continuous time, their model is ṁ = bE − (A − I) m.
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The PAGE model

The PAGE09 carbon cycle model (Hope, 2006, 2011, 2013) can be approximated using three boxes

with shares of emissions flowing into each of them equal to b = (0.19, 0.43, 0.38)′ and d = (1, 1, 0)′,

and A has diagonal elements equal to exp(-1/lifetime), where the lifetimes for the 3 boxes are ∞,

73.33 and close to 0 years respectively. A feedback from temperature to carbon concentration is

introduced in PAGE09, which scales up the concentration from the dynamic system by a ‘gain’

factor to compute forcing in that year. The gain factor does not, however, influence the evolution

of carbon stocks. This feedback, which models the decreasing absorptive capacity of oceans and

potentially that of soil, is a linear relation of temperature (with an uncertain constant of median

9.67%/◦C). However, a maximum of 53.33% can be added to the atmospheric carbon concentration.

B.2 Temperature dynamics models

In parallel to the analysis of the carbon cycle above, let temperature be given by Tt = d′mt, where

the vector mt follows from the linear system mt = Amt−1 + bFt. Using spectral decomposition,

A = VΛV−1 and defining d̄ ≡ V′d and b̄ ≡ V′b, we can solve for

Tt = d̄
(

ΛtV−1T0 +
t∑

s=1
Λt−sb̄Fs

)
= d̄′ΛtV−1T0 +

t∑
s=1

2∑
i=1

ψTi λ
T t−s
i Fs,

where ψTi ≡ b̄id̄i, i = 1, 2. It follows that the temperature response to a step increase in forcing,

Fs = ∆F, ∀s ≥ 1, and to an increase in initial temperature equals

∆Tt = d̄′ΛtV−1T0 +
[ 2∑
i=1

ψTi
(1− λTi )

(
1− λT ti

)]
∆F.

Note that the effects of initial temperature and a change in forcing can be added for linear systems

(called the superposition principle).

Geoffroy et al. (2013)

Geoffroy et al. (2013) have a two-box model for temperature dynamics in continuous time,

Ṫ = 1
C

[F − λT − γ(T − TLO)]
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and

ṪLO = γ

C0
(T − TLO),

where C = 7.3 W yr m-2 K-1 is the effective heat capacity of the upper/mixed ocean layer, C 0 =

106 W yr m-2 K-1 is the effective heat capacity of the deep oceans, λ = 1.13 W m-2 K-1 and γ =

0.73 W m-2 K-1. These are the values that best fit the multi-model mean of the CMIP5 ensemble.

There is a box T representing the global mean surface temperature of the atmosphere, land and

upper oceans, and a box TLO representing the mean temperature of the deep oceans. Steady-state

temperature corresponding to constant forcing F is T = TLO = F/λ, which gives an equilibrium

climate sensitivity or ECS (i.e. the steady-state increase in temperature resulting from doubling

the atmospheric stock of CO2 relative to pre-industrial) of F2×CO2/λ= 3.45/1.13 = 3.05 K given

F2×CO2 = 3.45 W m-2. To get an ECS of 3.1, we adjust by multiplying F2×CO2 by the factor

3.1/3.05 and modify the first equation to Ṫ = 1
C [(3.1/3.05)F − λT − γ(T − TLO)].

The state transition matrix A =

−(λ+ γ)/C γ/C

γ/C0 −γ/C0

, which has eigenvalues -0.2575 and

-0.0041. Using d = (1, 0)′ and b = (1/C, 0)′, we obtain ψT1 = 0.135 and ψT2 = 0.0015, which gives

the following impulse response function:

∆T (t)
∆F (s) = 0.135 exp(−0.2575(t− s)) + 0.0015 exp(−0.0041(t− s)).

Notice ψT1 is much larger than ψT2 , i.e. the system responds quickly to an impulse of forcing. Since

the lower ocean has a large heat capacity, it quickly absorbs the extra heat in the atmosphere.

By contrast, the reaction to a step increase in forcing ∆F is slower. The temperature increase

for a step increase in forcing beginning at time s, with a steady-state temperature effect of ∆F/λ,

is
∆T (t)
∆F = 1

λ
[1− 0.523 exp(−0.2575(t− s))− 0.366 exp(−0.0041(t− s))] .

This formula is based on the same eigenvalues, but the relative weight on the slow box is much

larger: ψ̂T1 = 0.523 versus ψ̂T2 = 0.366. With constant forcing, the deep ocean reaches the same

steady-state temperature as the atmosphere, but, given the large heat capacity of the deep ocean,

it takes much longer to reach.
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For the Delay 56 and Delay 112 model versions, we multiply the capacities C and C0 by factors

of 5 and 10 respectively. This does not affect the values of ψTi . However, the Delay 56 system

has eigenvalues of -0.0515 and -0.0008; the Delay 112 system -0.0258 and -0.0004. In other words,

half-lives are multiplied by 5 and 10 for the Delay 56 and Delay 112 variants respectively.

DICE 2016

DICE 2016 is formulated in discrete time with a time unit of 5 years and, like the model of Geoffroy

et al. (2013), has two heat boxes, one for the temperature of the atmosphere, land and upper oceans,

and one for the temperature of the deep oceans:

Tt = Tt−1 + 1
CUP

[
Ft −

3.6813
ECS

Tt−1 − 0.088(Tt−1 − TLO,t−1)
]

and

TLO,t = TLO,t−1 + 0.088
CLO

(Tt−1 − TLO,t−1),

where CUP = 1/0.1005 W yr m-2 K-1 and CLO = 0.088/0.025 W yr m-2 K-1 are the effective heat

capacities of the upper and lower oceans respectively, and 0.088 and 0.025 are the coefficients of

heat exchange between the upper and deep oceans respectively. The steady state temperature is

Tt = TLO,t = ECS × Ft/3.6813 = 0.842Ft, where ECS is set to 3.1 K. The transient climate

sensitivity is set to 1.7 K. The transition matrix A =

0.873 0.009

0.025 0.975

 , b = (1/CUP , 0)′ and

d = (1, 0)′. This yields eigenvalues 0.871 and 0.977 with corresponding shares ψT1 = 0.0985 and

ψT2 = 0.002. Note that ψT1 + ψT2 = 1/CUP = 0.1005. The temperature response to an impulse

in forcing is ∆Tt
∆F1

= 0.0985 × 0.8711t−1 + 0.0022 × 0.9771t−1. The temperature response to a step

increase in forcing at time s equals

∆Tt
∆F =

2∑
i=1

(
ψTi λ

T t
i

1− λT ti

)
= 0.0985×

(
1− 0.871t

)
0.129 + 0.002×

(
1− 0.977t

)
0.003 .

We find that limt→∞
∆Tt
∆F = ∑2

i=1
ψT

i

λT
i

→ 0.0985
0.129 + 0.002

0.003 = 0.8521.
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Golosov et al. (2014)

Golosov et al. (2014) have no temperature lag, so they have Tt = 0.842Ft.

Gerlagh and Liski (2018)

Gerlagh and Liski (2018) have a simple lag with partial adjustment of 0.183 per decade (or 2% per

year), so they have

Tt = Tt−1 + 0.183 (0.842Ft − Tt−1).

This corresponds to a half-life of 34 years. Although this long lag is in line with the scientific

evidence of some time ago (Solomon et al., 2009), it does not accord with more recent scientific

evidence (e.g Geoffroy et al., 2013). The resulting temperature response to an impulse in forcing is
∆Tt
∆F1

= 0.842× 0.817t−1. The corresponding response to a step increase in forcing is

∆Tt
∆F = 0.842× 1− 0.817t

0.183 .

FUND

The annual FUNDmodel also has a simple temperature lag, but with a partial adjustment coefficient

of 0.0224 per year, corresponding to a mean lag of 44.6 years and a half-life of 30.6 years.

PAGE

Global mean temperature in PAGE09 is the weighted sum of regional temperatures. Once aggre-

gated, however, global temperature follows a median life-time of 24 years (and mean of 50 years).

Convoluted temperature response function

Equation (9) gives the convoluted temperature response function, which is derived from the carbon

stock-emissions response function, the temperature-forcing response function, and ∂Ts
∂Ss

= F2×CO2
ln 2

1
Ms
.

The temperature response to a small step change in the stock of atmospheric carbon, ∆Ss =

∆S, ∀S ≥ 0, is thus ∆Tt
∆S = F2×CO2

ln 2
1
M0

∆Tt
∆F for the Geoffroy et al. (2013) model and ∆Tt

∆S =
F2×CO2

ln 2
1
M1

∆Tt
∆F for the discrete-time models such as DICE. Note that the response to a step in-

crease in atmospheric carbon decreases in the values of the atmospheric carbon stock. To calculate
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these convoluted step responses, we suppose that the concentration of atmospheric carbon stays

constant at its initial value. Hence, we set Ms to 3038 GtCO2 or 389 ppmv for all s. For the DICE

model we thus get ∆Tt
∆S = F2×CO2

ln 2
1
M1

∆Tt
∆F = 0.0012585 as t → ∞. For a small step change in atmo-

spheric carbon of 100 GtC, the steady-state increase in temperature would then equal 0.0012585 ×

100 × 44/12 = 0.46 K, which is consistent with the plot in Figure 4.

C Further results

DICE 2016 compared with DICE-FAIR-Geoffroy

Here we compare standard DICE 2016 (row 5) with DICE-FAIR-Geoffroy (row 1). This comparison

is affected by differences in: (a) temperature dynamics between the DICE 2016 and Geoffroy et

al. (2013) models; (b) removal of atmospheric CO2 between the DICE 2016 and Joos et al. (2013)

carbon cycles, and; (c) assumptions about (non-)diminishing marginal removal of atmospheric CO2

between DICE 2016/Joos et al. (2013) and FAIR. Therefore this comparison is of the combined

effect of all the modifications to DICE that we have identified, which would bring it fully into line

with the climate science models we have assembled.

The combined effect of these is a higher optimal carbon price in DICE 2016 than in DICE-

FAIR-Geoffroy (see Figure 5). The 2020 optimal carbon price is 24% higher in DICE 2016. Yet it

is on the 2◦C cost-minimising paths that we see the largest price differences. The 2020 2◦C cost-

minimising carbon price is three times higher in DICE 2016 than in DICE-FAIR-Geoffroy, resulting

in a reduction in 2020 emissions of almost 9GtCO2. Yet, despite lower emissions throughout this

century on both the optimal and 2◦C cost-minimising paths, temperatures end up being higher in

DICE 2016, by more than 0.5◦C in 2100 on the optimal path. The main driver of these differences

is the tendency of DICE 2016 to heat up too much in the long run, as the analysis just below will

show. This is particularly manifest on the 2◦C cost-minimising path, because heating up too much

in the long run makes it extremely difficult to avoid the global mean temperature exceeding 2◦C

above the pre-industrial level.

A method of apportioning the differences between DICE 2016 and DICE-FAIR-Geoffroy to fac-

tors (a) to (c) is to plot the percentage difference in carbon prices and temperatures – always

relative to DICE-FAIR-Geoffroy – in DICE 2016, DICE-Geoffroy (i.e. combining the DICE 2016
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carbon cycle with the Geoffroy et al. (2013) temperature dynamics model), DICE-Joos (i.e. com-

bining the Joos et al. (2013) carbon cycle with the DICE 2016 temperature dynamics model) and

DICE-Joos-Geoffroy. Figure 6 does this.26 The way to intuit this figure is that whichever model is

closest to DICE 2016 explains most of the difference between it and DICE-FAIR-Geoffroy. Hence

the main contributing factor to the difference in optimal carbon prices between DICE 2016 and

DICE-FAIR-Geoffroy is (b) insufficient removal of atmospheric CO2 in DICE 2016 (top left panel).

This is a feature shared by DICE 2016 and DICE-Geoffroy, but not by the other models, which

incorporate the four-box carbon cycle of Joos et al. (2013). However, when it comes to the 2◦C

carbon price, or temperature on either path, the main contributing factor to the difference between

DICE 2016 and DICE-FAIR-Geoffroy is (a) temperature dynamics. Excessive delay, offset by exces-

sive long-term warming, is a feature shared by the DICE 2016 and DICE-Joos variants. Excessive

delay and excessive long-term warming are responsible for the temperature trajectories in DICE

2016 that start below DICE-FAIR-Geoffroy but end up higher, significantly so on the optimal path.

Excessive long-term warming also explains the high 2◦C carbon price, because it significantly limits

the 2◦C carbon budget.
26For this comparison we omit emissions, because when emissions approach or reach zero the differences between

the models can explode or be undefined respectively.
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Figure 6: Price and temperature paths relative to the benchmark DICE-FAIR-Geoffroy model. Left
column – welfare-maximising path; right column – cost-effective path to limit warming to 2◦C. Top
row – carbon prices; bottom row – warming. Whichever model is closest to DICE 2016 explains
most of the difference between it and DICE-FAIR-Geoffroy.
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2◦C cost minimisation under different exogenous emissions/forcing scenarios

Figure 7 shows using DICE-FAIR-Geoffroy that limiting warming to 2◦C is much more costly when

exogenous CO2 emissions/forcing come from standard DICE 2016 than when they come from the

IPCC’s RCP2.6 scenario. The former scenario was designed to apply no matter the amount of CO2

emissions abatement undertaken in the model (i.e. from the energy sector), while the latter was

designed by IPCC to imply a level of abatement outside CO2/energy that is consistent with the

2◦C goal. Limiting warming to 2◦C is infeasible in DICE 2016 with standard DICE 2016 exogenous

emissions/forcing.
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Figure 7: 2◦C cost-minimising carbon prices in DICE-FAIR-Geoffroy using two alternative scenarios
for emissions of CO2 from land use and forestry, and exogenous radiative forcing from other green-
house gases and agents. Carbon prices are much higher under the standard DICE 2016 scenario
than under the RCP2.6 scenario.
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D GAMS code for DICE 2016 with the FAIR carbon cycle and

the Geoffroy et al. (2013) temperature model

In this section we provide GAMS code to implement the FAIR carbon cycle in DICE 2016, as well

as parameters to implement the Geoffroy et al. (2013) warming model. This replaces the three-box

model of the carbon cycle and the two-box temperature model of standard DICE 2016.
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$ontext 

This is a modified version of DICE-2016R-091916ap.gms. 

The carbon cycle has been changed to the four box model of Joos et al. and parameters of thermal 

dynamics to match Geoffroy et al. The positive feedback from sink satiation has been added. See 

**-comments for details throughout. 

 

$title        DICE-2016R September 2016 (DICE-2016R-091216a.gms) 

$offtext 

 

set        t  Time periods (5 years per period)                    /1*100/ 

 

PARAMETERS 

** Availability of fossil fuels 

        fosslim  Maximum cumulative extraction fossil fuels (GtC)  /6000/ 

**Time Step 

        tstep    Years per Period                                  /5/ 

** If optimal control 

        ifopt    Indicator where optimized is 1 and base is 0      /0/ 

        ifmiulim Indicator where fixed miu('1') is 1 and 0 else    /1/ 

** Preferences 

        elasmu   Elasticity of marginal utility of consumption     /1.45 / 

        prstp    Initial rate of social time preference per year   /.015  / 

**new parameters for public decision making 

        elasmu_pub   Elasticity of marginal utility of consumption     /1.45 / 

        prstp_pub    Initial rate of social time preference per year   /.015  / 

 

** Population and technology 

        gama     Capital elasticity in production function        /.300    / 

        pop0     Initial world population 2015 (millions)         /7403    / 

        popadj   Growth rate to calibrate to 2050 pop projection  /0.134   / 

        popasym  Asymptotic population (millions)                 /11500   / 

        dk       Depreciation rate on capital (per year)          /.100    / 

        q0       Initial world gross output 2015 (trill 2010 USD) /105.5   / 

        k0       Initial capital value 2015 (trill 2010 USD)      /223     / 

        a0       Initial level of total factor productivity       /5.115    / 

        ga0      Initial growth rate for TFP per 5 years          /0.076   / 

        dela     Decline rate of TFP per 5 years                  /0.005   / 

** Emissions parameters 

        gsigma1  Initial growth of sigma (per year)                   /-0.0152 / 

        dsig     Decline rate of decarbonization (per period)         /-0.001  / 

        eland0   Carbon emissions from land 2015 (GtCO2 per year)     / 2.6    / 

        deland   Decline rate of land emissions (per period)          / .115   / 

        e0       Industrial emissions 2015 (GtCO2 per year)           /35.85    / 

        miu0     Initial emissions control rate for base case 2015    /.03     / 

** Carbon cycle 

** new carbon cycle replaces DICE's oceanic carbon reservoirs with four atmospheric carbon 

boxes. Transition matrix is diagonal since it is a reduced-form model. 

$ontext 

* Initial Conditions 

        mat0   Initial Concentration in atmosphere 2015 (GtC)        /851    / 

        mu0    Initial Concentration in upper strata 2015 (GtC)      /460    / 

        ml0    Initial Concentration in lower strata 2015 (GtC)      /1740   / 

        mateq  Equilibrium concentration atmosphere  (GtC)           /588    / 

        mueq   Equilibrium concentration in upper strata (GtC)       /360    / 

        mleq   Equilibrium concentration in lower strata (GtC)       /1720   / 

* Flow paramaters 

        b12      Carbon cycle transition matrix                      /.12   / 

        b23      Carbon cycle transition matrix                      /0.007 / 

* These are for declaration and are defined later 

        b11      Carbon cycle transition matrix 

        b21      Carbon cycle transition matrix 

        b22      Carbon cycle transition matrix 

        b32      Carbon cycle transition matrix 

        b33      Carbon cycle transition matrix 

$offtext 

        mperm0 Initial stock in fastes carbon box (GtC)              /139.1 / 

        mslow0 Initial stock in fastes carbon box (GtC)              /90.2  / 

        mmedium0 Initial stock in fastes carbon box (GtC)            /29.2  / 

        mfast0 Initial stock in fastes carbon box (GtC)              /4.2   / 

        b10      proportion of emissions in permanent box            /.217   / 

        b11      proportion of emissions in slowes box               /.224   / 

        b12      proportion of emissions in medium box               /.282   / 

        b13      proportion of emissions in fast box                 /.276   / 

        b21      Decay speed slowest box                             /.00254 / 

        b22      Decay speed medium box                              /.0274  / 

        b23      Decay speed fast box                                /.232342 / 

** The follow three parameters are needed for positive feedback. 

        R0       pre-industrial iIRF                                 / 34.4   / 



        RC       iIRF response to CACC(GtC)                          / 0.019  / 

        RT       iIRF response to T(°C)                              / 4.165  / 

** End of changes.         

        sig0     Carbon intensity 2010 (kgCO2 per output 2005 USD 2010) 

** Climate model parameters 

        t2xco2   Equilibrium temp impact (oC per doubling CO2)    / 3.1  / 

        fex0     2015 forcings of non-CO2 GHG (Wm-2)              / 0.5  / 

        fex1     2100 forcings of non-CO2 GHG (Wm-2)              / 1.0  / 

        tocean0  Initial lower stratum temp change (C from 1900)  /.0068 / 

        tatm0    Initial atmospheric temp change (C from 1900)    /0.85  / 

        c1       Climate equation coefficient for upper level     /0.1005  / 

        c3       Transfer coefficient upper to lower stratum      /0.088   / 

        c4       Transfer coefficient for lower level             /0.025   / 

        fco22x   Forcings of equilibrium CO2 doubling (Wm-2)      /3.6813  / 

** Climate damage parameters 

        a10       Initial damage intercept                         /0       / 

        a20       Initial damage quadratic term 

        a1        Damage intercept                                 /0       / 

        a2        Damage quadratic term                            /0.00236 / 

        a3        Damage exponent                                  /2.00    / 

** Abatement cost 

        expcost2  Exponent of control cost function               / 2.6  / 

        pback     Cost of backstop 2010$ per tCO2 2015            / 550  / 

        gback     Initial cost decline backstop cost per period   / .025 / 

        limmiu    Upper limit on control rate after 2150          / 1.2 / 

        tnopol    Period before which no emissions controls base  / 45   / 

        cprice0   Initial base carbon price (2010$ per tCO2)      / 2    / 

        gcprice   Growth rate of base carbon price per year       /.02   / 

 

** Scaling and inessential parameters 

* Note that these are unnecessary for the calculations 

* They ensure that MU of first period's consumption =1 and PV cons = PV utilty 

        scale1      Multiplicative scaling coefficient           /0.0302455265681763 / 

        scale2      Additive scaling coefficient                 /-10993.704/ ; 

 

* Program control variables 

sets     tfirst(t), tlast(t), tearly(t), tlate(t); 

 

PARAMETERS 

        l(t)          Level of population and labor 

        al(t)         Level of total factor productivity 

        sigma(t)      CO2-equivalent-emissions output ratio 

        rr(t)         Average utility social discount rate 

        ga(t)         Growth rate of productivity from 

        forcoth(t)    Exogenous forcing for other greenhouse gases 

        gl(t)         Growth rate of labor 

        gcost1        Growth of cost factor 

        gsig(t)       Change in sigma (cumulative improvement of energy efficiency) 

        etree(t)      Emissions from deforestation 

        cumetree(t)   Cumulative from land 

        cost1(t)      Adjusted cost for backstop 

        lam           Climate model parameter 

        gfacpop(t)    Growth factor population 

        pbacktime(t)  Backstop price 

        optlrsav      Optimal long-run savings rate used for transversality 

        scc(t)        Social cost of carbon 

        cpricebase(t) Carbon price in base case 

        photel(t)     Carbon Price under no damages (Hotelling rent condition) 

        ppm(t)        Atmospheric concentrations parts per million 

        atfrac(t)     Atmospheric share since 1850 

        atfrac2010(t)     Atmospheric share since 2010 ; 

* Program control definitions 

        tfirst(t) = yes$(t.val eq 1); 

        tlast(t)  = yes$(t.val eq card(t)); 

* Parameters for long-run consistency of carbon cycle 

** These calculations specify DICE's transition matrix in carbon cycle. They are not needed 

anymore. 

$ontext 

        b11 = 1 - b12; 

        b21 = b12*MATEQ/MUEQ; 

        b22 = 1 - b21 - b23; 

        b32 = b23*mueq/mleq; 

        b33 = 1 - b32 ; 

$offtext 

** End of changes 

* Further definitions of parameters 

        a20 = a2; 

        sig0 = e0/(q0*(1-miu0)); 



        lam = fco22x/ t2xco2; 

        l("1") = pop0; 

        loop(t, l(t+1)=l(t);); 

        loop(t, l(t+1)=l(t)*(popasym/L(t))**popadj ;); 

 

        ga(t)=ga0*exp(-dela*5*((t.val-1))); 

        al("1") = a0; loop(t, al(t+1)=al(t)/((1-ga(t)));); 

        gsig("1")=gsigma1; loop(t,gsig(t+1)=gsig(t)*((1+dsig)**tstep) ;); 

        sigma("1")=sig0;   loop(t,sigma(t+1)=(sigma(t)*exp(gsig(t)*tstep));); 

 

        pbacktime(t)=pback*(1-gback)**(t.val-1); 

        cost1(t) = pbacktime(t)*sigma(t)/expcost2/1000; 

 

        etree(t) = eland0*(1-deland)**(t.val-1); 

        cumetree("1")= 100; loop(t,cumetree(t+1)=cumetree(t)+etree(t)*(5/3.666);); 

 

        rr(t) = 1/((1+prstp_pub)**(tstep*(t.val-1))); 

        forcoth(t) = fex0+ (1/17)*(fex1-fex0)*(t.val-1)$(t.val lt 18)+ (fex1-fex0)$(t.val ge 

18); 

        optlrsav = (dk + .004)/(dk + .004*elasmu + prstp)*gama; 

 

*Base Case Carbon Price 

        cpricebase(t)= cprice0*(1+gcprice)**(5*(t.val-1)); 

 

VARIABLES 

        MIU(t)          Emission control rate GHGs 

        FORC(t)         Increase in radiative forcing (watts per m2 from 1900) 

        TATM(t)         Increase temperature of atmosphere (degrees C from 1900) 

        TOCEAN(t)       Increase temperatureof lower oceans (degrees C from 1900) 

        MAT(t)          Carbon concentration increase in atmosphere (GtC from 1750) 

** Old variables are moved and new ones introduced below 

$ontext 

        MU(t)           Carbon concentration increase in shallow oceans (GtC from 1750) 

        ML(t)           Carbon concentration increase in lower oceans (GtC from 1750) 

$offtext 

        MPERM(t)        Carbon concentration increase in permanent box (GtC from 1750) 

        MSLOW(t)        Carbon concentration increase in slow decay box (GtC from 1750) 

        MMEDIUM(t)      Carbon concentration increase in medium decay box (GtC from 1750) 

        MFAST(t)        Carbon concentration increase in fast decay box (GtC from 1750) 

        CACC(t)         Carbon accumulated minus past satiation (GtC) 

        iIRF(T)         100-year integrated impulse response function 

        alpha(T)        time constant scaling factor (positive feed-back from emissions to 

reduced carbon decay) 

** End of changes  

        E(t)            Total CO2 emissions (GtCO2 per year) 

        EIND(t)         Industrial emissions (GtCO2 per year) 

        C(t)            Consumption (trillions 2005 US dollars per year) 

        K(t)            Capital stock (trillions 2005 US dollars) 

        CPC(t)          Per capita consumption (thousands 2005 USD per year) 

        I(t)            Investment (trillions 2005 USD per year) 

        S(t)            Gross savings rate as fraction of gross world product 

        RI(t)           Real interest rate (per annum) 

        Y(t)            Gross world product net of abatement and damages (trillions 2005 USD per 

year) 

        YGROSS(t)       Gross world product GROSS of abatement and damages (trillions 2005 USD 

per year) 

        YNET(t)         Output net of damages equation (trillions 2005 USD per year) 

        DAMAGES(t)      Damages (trillions 2005 USD per year) 

        DAMFRAC(t)      Damages as fraction of gross output 

        ABATECOST(t)    Cost of emissions reductions  (trillions 2005 USD per year) 

        MCABATE(t)      Marginal cost of abatement (2005$ per ton CO2) 

        CCA(t)          Cumulative industrial carbon emissions (GTC) 

        CCATOT(t)       Total carbon emissions (GtC) 

        PERIODU(t)      One period utility function 

        CPRICE(t)       Carbon price (2005$ per ton of CO2) 

        CEMUTOTPER(t)   Period utility 

        UTILITY         Welfare function; 

 

** Obsolete variables MU and ML have been removed in the declaration of non-negative variables 

below. Additional ones are introduced to reflect new carbon dynamics. 

* NONNEGATIVE VARIABLES  MIU, TATM, MAT, MU, ML, Y, YGROSS, C, K, I; 

NONNEGATIVE VARIABLES  MIU, TATM, MAT, Y, YGROSS, C, K, I; 

NONNEGATIVE VARIABLES  MPERM, MSLOW, MMEDIUM, MFAST, alpha; 

 

EQUATIONS 

*Emissions and Damages 

        EEQ(t)           Emissions equation 

        EINDEQ(t)        Industrial emissions 



        CCACCA(t)        Cumulative industrial carbon emissions 

        CCATOTEQ(t)        Cumulative total carbon emissions 

        FORCE(t)         Radiative forcing equation 

        DAMFRACEQ(t)     Equation for damage fraction 

        DAMEQ(t)         Damage equation 

        ABATEEQ(t)       Cost of emissions reductions equation 

        MCABATEEQ(t)     Equation for MC abatement 

        CARBPRICEEQ(t)   Carbon price equation from abatement 

 

*Climate and carbon cycle 

        MMAT(t)          Atmospheric concentration equation 

** Old carbon cycle equations are removed and new equations for carbon boxes and accounting for 

past sink satiation introduced. 

$ontext 

        MMU(t)           Shallow ocean concentration 

        MML(t)           Lower ocean concentration 

$offtext 

        MMPERM(t)        Permanent carbon box 

        MMSLOW(t)        Slow decay carbon box 

        MMMEDIUM(t)      Medium decay speed carbon box 

        MMFAST(t)        Fast decay carbon box 

        CACCEQ(t)        Cumulative carbon emissions(t) 

        iIRFeq1(t)       calibraton of IRF to 100 year impulse 

        iIRFeq2(t) 

** End of changes 

        TATMEQ(t)        Temperature-climate equation for atmosphere 

        TOCEANEQ(t)      Temperature-climate equation for lower oceans 

 

*Economic variables 

        YGROSSEQ(t)      Output gross equation 

        YNETEQ(t)        Output net of damages equation 

        YY(t)            Output net equation 

        CC(t)            Consumption equation 

        CPCE(t)          Per capita consumption definition 

        SEQ(t)           Savings rate equation 

        KK(t)            Capital balance equation 

        RIEQ(t)          Interest rate equation 

 

* Utility 

        CEMUTOTPEREQ(t)  Period utility 

        PERIODUEQ(t)     Instantaneous utility function equation 

        UTIL             Objective function      ; 

 

** Equations of the model 

*Emissions and Damages 

 eeq(t)..             E(t)           =E= EIND(t) + etree(t); 

 eindeq(t)..          EIND(t)        =E= sigma(t) * YGROSS(t) * (1-(MIU(t))); 

 ccacca(t+1)..        CCA(t+1)       =E= CCA(t)+ EIND(t)*5/3.666; 

 ccatoteq(t)..        CCATOT(t)      =E= CCA(t)+cumetree(t); 

 force(t)..           FORC(t)        =E= fco22x * ((log((MAT(t)/588.000))/log(2))) + forcoth(t); 

 damfraceq(t) ..      DAMFRAC(t)     =E= (a1*TATM(t))+(a2*TATM(t)**a3) ; 

 dameq(t)..           DAMAGES(t)     =E= YGROSS(t) * DAMFRAC(t); 

 abateeq(t)..         ABATECOST(t)   =E= YGROSS(t) * cost1(t) * (MIU(t)**expcost2); 

 mcabateeq(t)..       MCABATE(t)     =E= pbacktime(t) * MIU(t)**(expcost2-1); 

 carbpriceeq(t)..     CPRICE(t)      =E= pbacktime(t) * (MIU(t))**(expcost2-1); 

 

*Climate and carbon cycle 

** New carbon cycle removes old equations and introduces new equations for carbon boxes, 

cumulative emissions, and saturation of sinks 

$ontext 

 mmat(t+1)..          MAT(t+1)       =E= MAT(t)*b11 + MU(t)*b21 + (E(t)*(5/3.666)); 

 mml(t+1)..           ML(t+1)        =E= ML(t)*b33  + MU(t)*b23; 

 mmu(t+1)..           MU(t+1)        =E= MAT(t)*b12 + MU(t)*b22 + ML(t)*b32; 

$offtext 

 mmat(t)..            MAT(t)         =E= MPERM(t) + MSLOW(t) + MMEDIUM(t) +  MFAST(t) + 588  ; 

 mmperm(t+1)..        MPERM(t+1)     =E= b10*5/3.666 * E(t) + MPERM(t) ; 

 mmslow(t+1)..        MSLOW(t+1)     =E= b11/(b21/alpha(t)) *(1-exp(-b21/alpha(t)*5))/3.666 * 

E(t) + exp(-b21/alpha(t)*5)*MSLOW(t) ; 

 mmmedium(t+1)..      MMEDIUM(t+1)   =E= b12/(b22/alpha(t)) *(1-exp(-b22/alpha(t)*5))/3.666 * 

E(t) + exp(-b22/alpha(t)*5)*MMEDIUM(t) ; 

 mmfast(t+1)..        MFAST(t+1)     =E= b13/(b23/alpha(t)) *(1-exp(-b23/alpha(t)*5))/3.666 * 

E(t) + exp(-b23/alpha(t)*5)*MFAST(t) ; 

 cacceq(t)..          CACC(t)        =E= CCA(t) + cumetree(t) - (MAT(T) - 588) ; 

 iIRFeq1(T)..         iIRF(T)        =E= R0 + RC*CACC(T) + RT*TATM(T) ; 

 iIRFeq2(T)..         iIRF(T)        =E= b10 * 100 + alpha(t) * ( 

                                         + b11 / b21 * ( 1 - exp( -100*b21/alpha(t) ) ) 

                                         + b12 / b22 * ( 1 - exp( -100*b22/alpha(t) ) ) 

                                         + b13 / b23 * ( 1 - exp( -100*b23/alpha(t) ) )   ); 



** End of changes 

 tatmeq(t+1)..        TATM(t+1)      =E= TATM(t) + c1 * ((FORC(t+1)-(fco22x/t2xco2)*TATM(t))-

(c3*(TATM(t)-TOCEAN(t)))); 

 toceaneq(t+1)..      TOCEAN(t+1)    =E= TOCEAN(t) + c4*(TATM(t)-TOCEAN(t)); 

 

*Economic variables 

 ygrosseq(t)..        YGROSS(t)      =E= (al(t)*(L(t)/1000)**(1-GAMA))*(K(t)**GAMA); 

 yneteq(t)..          YNET(t)        =E= YGROSS(t)*(1-damfrac(t)); 

 yy(t)..              Y(t)           =E= YNET(t) - ABATECOST(t); 

 cc(t)..              C(t)           =E= Y(t) - I(t); 

 cpce(t)..            CPC(t)         =E= 1000 * C(t) / L(t); 

 seq(t)..             I(t)           =E= S(t) * Y(t); 

 kk(t+1)..            K(t+1)         =L= (1-dk)**tstep * K(t) + tstep * I(t); 

 rieq(t+1)..          RI(t)          =E= (1+prstp_pub) * (CPC(t+1)/CPC(t))**(elasmu_pub/tstep) - 

1; 

 

*Utility 

 cemutotpereq(t)..    CEMUTOTPER(t)  =E= PERIODU(t) * L(t) * rr(t); 

 periodueq(t)..       PERIODU(t)     =E= ((C(T)*1000/L(T))**(1-elasmu_pub)-1)/(1-elasmu_pub)-1; 

 util..               UTILITY        =E= tstep * scale1 * sum(t,  CEMUTOTPER(t)) + scale2 ; 

 

*Resource limit 

CCA.up(t)       = fosslim; 

 

* Control rate limits 

MIU.up(t)            = limmiu; 

MIU.up(t)$(t.val<30) = 1; 

 

**  Upper and lower bounds for stability 

K.LO(t)         = 1; 

MAT.LO(t)       = 10; 

** following two bounds are obsolete 

*MU.LO(t)        = 100; 

*ML.LO(t)        = 1000; 

C.LO(t)         = 2; 

TOCEAN.UP(t)    = 20; 

TOCEAN.LO(t)    = -1; 

TATM.UP(t)      = 20; 

CPC.LO(t)       = .01; 

TATM.UP(t)      = 12; 

 

* Control variables 

set lag10(t) ; 

lag10(t) =  yes$(t.val gt card(t)-10); 

S.FX(lag10(t)) = optlrsav; 

 

* Initial conditions 

CCA.FX(tfirst)    = 400; 

K.FX(tfirst)      = k0; 

** following three initial conditions are obsolete and new ones introduced. 

*MAT.FX(tfirst)    = mat0; 

*MU.FX(tfirst)     = mu0; 

*ML.FX(tfirst)     = ml0; 

MPERM.FX(tfirst)    = MPERM0; 

MSLOW.FX(tfirst)    = MSLOW0; 

MMEDIUM.FX(tfirst)  = MMEDIUM0; 

MFAST.FX(tfirst)    = MFAST0; 

** End of Changes 

TATM.FX(tfirst)   = tatm0; 

TOCEAN.FX(tfirst) = tocean0; 

 

** Solution options 

option iterlim = 99900; 

option reslim = 99999; 

option solprint = on; 

option limrow = 0; 

option limcol = 0; 

model  CO2 /all/; 

 

** Variables changed to match thermal warming of Geoffroy et al. 

c1  = 0.386 ; 

lam = 1.13  ; 

c3  = 0.73  ; 

c4  = 0.034 ; 

fco22x = 3.503; 

alpha.lo(t) = .1; 

alpha.up(t) = 1000; 

** Exogenous forcing components (variables etree and forcoth) are adapted to SSP1 2.6. 



Parameter etree_DICE, forcoth_DICE; 

etree_DICE(T)  = etree(T); 

forcoth_DICE(T)= forcoth(T); 

Parameter etree_SSP1_26, forcoth_SSP1_26; 

 

forcoth_SSP1_26(T)              =  0.297 ; 

forcoth_SSP1_26(T)$(T.val GE 2) =  0.393 ; 

forcoth_SSP1_26(T)$(T.val GE 4) =  0.497 ; 

forcoth_SSP1_26(T)$(T.val GE 6) =  0.468 ; 

forcoth_SSP1_26(T)$(T.val GE 8) =  0.402 ; 

forcoth_SSP1_26(T)$(T.val GE 10)=  0.342 ; 

forcoth_SSP1_26(T)$(T.val GE 12)=  0.302 ; 

forcoth_SSP1_26(T)$(T.val GE 14)=  0.274 ; 

forcoth_SSP1_26(T)$(T.val GE 16)=  0.255 ; 

forcoth_SSP1_26(T)$(T.val GE 18)=  0.257 ; 

 

etree_SSP1_26(T)              =  3517.440/1000; 

etree_SSP1_26(T)$(T.val GE 2) =  3178.329/1000; 

etree_SSP1_26(T)$(T.val GE 4) =   188.063/1000; 

etree_SSP1_26(T)$(T.val GE 6) = - 387.799/1000; 

etree_SSP1_26(T)$(T.val GE 8) = -1758.623/1000; 

etree_SSP1_26(T)$(T.val GE 10)= -2586.615/1000; 

etree_SSP1_26(T)$(T.val GE 12)= -2583.968/1000; 

etree_SSP1_26(T)$(T.val GE 14)= -2436.902/1000; 

etree_SSP1_26(T)$(T.val GE 16)= -2084.681/1000; 

etree_SSP1_26(T)$(T.val GE 18)= -2899.036/1000; 

 

display etree_DICE, etree_SSP1_26, forcoth_DICE, forcoth_SSP1_26; 

etree(T) = etree_SSP1_26(T); 

forcoth(T) = forcoth_SSP1_26(T); 

** End of changes 

 

* For base run, this subroutine calculates Hotelling rents 

* Carbon price is maximum of Hotelling rent or baseline price 

* The cprice equation is different from 2013R. Not sure what went wrong. 

If (ifopt eq 0, 

       a2 = 0; 

       solve CO2 maximizing UTILITY using nlp; 

       photel(t)=cprice.l(t); 

       a2 = a20; 

); 

 

cprice.up(t)$(ifopt=0 and t.val<tnopol+1) = max(photel(t),cpricebase(t)); 

miu.fx('1')$(ifopt=1 and ifmiulim=1) = miu0; 

miu.lo('1')$(ifmiulim=0) = 0; 

miu.up('1')$(ifmiulim=0) = 1; 

 

solve co2 maximizing utility using nlp; 

solve co2 maximizing utility using nlp; 

solve co2 maximizing utility using nlp; 

 

cprice.up(t) = inf; 

miu.lo(t) = 0; 

miu.up(t)            = limmiu; 

miu.up(t)$(t.val<30) = 1; 

 

** POST-SOLVE 

** Output reported has been removed. 

 

** Optimal Solution 

ifopt = 1; 

cprice.up(t)$(ifopt=0 and t.val<tnopol+1) = max(photel(t),cpricebase(t)); 

miu.fx('1')$(ifopt=1 and ifmiulim=1) = miu0; 

miu.lo('1')$(ifmiulim=0) = 0; 

miu.up('1')$(ifmiulim=0) = 1; 

solve co2 maximizing utility using nlp; 

solve co2 maximizing utility using nlp; 

solve co2 maximizing utility using nlp; 

cprice.up(t) = inf; 

 

** 2°C target 

TATM.up(T) = 2; 

TATM.FX(tfirst)   = tatm0; 

solve co2 maximizing utility using nlp; 

solve co2 maximizing utility using nlp; 

solve co2 maximizing utility using nlp; 

TATM.up(T) = 12; 

TATM.FX(tfirst)   = tatm0; 



 

** 2°C Target without any climate damage  

ifopt = 1; 

TATM.up(T) = 2; 

TATM.FX(tfirst)   = tatm0; 

a2 = 0; 

solve co2 maximizing utility using nlp; 

solve co2 maximizing utility using nlp; 

solve co2 maximizing utility using nlp; 

a2 = a20; 

TATM.up(T) = 12; 

TATM.FX(tfirst)   = tatm0; 



E Warming as a function of cumulative CO2 emissions

Here we compare the multi-model mean response of the CMIP5 climate science models to the

economic models, scrutinising the relationship between warming and cumulative CO2 emissions.

All the models are fed with emissions from the IPCC RCP scenarios, including both CO2 and

other greenhouse gases and forcing agents. The CMIP5 multi-model mean response is obtained

from Stocker et al. (2013). The CMIP5 response is quasi-linear. By contrast, most of the economic

models produce a convex response, with warming increasing more than proportionately as a function

of cumulative CO2 emissions, except for the high emissions RCP8.5 scenario and except for the

Golosov et al. (2014) model. FAIR is a reasonably close approximation of the complex CMIP5

models.

Figure 8: Warming in response to cumulative CO2 emissions, comparing the CMIP5 multi-model
mean with DICE 2016
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Figure 9: Warming in response to cumulative CO2 emissions, comparing the CMIP5 multi-model
mean with FUND

2000 3000 4000 5000 6000 7000 8000

Cumulative Emissions GtCO2

1

1.5

2

2.5

3

3.5

4

4.5

G
lo

ba
l w

ar
m

in
g 

(°
C

)

RCP 2.6

RCP 4.5

RCP 6.0

RCP 2.6

RCP 4.5

RCP 6.0

RCP 8.5

RCP 8.5

IPCC AR5 model mean
FUND

57



Figure 10: Warming in response to cumulative CO2 emissions, comparing the CMIP5 multi-model
mean with PAGE
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Figure 11: Warming in response to cumulative CO2 emissions, comparing the CMIP5 multi-model
mean with Golosov et al. (2014)
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Figure 12: Warming in response to cumulative CO2 emissions, comparing the CMIP5 multi-model
mean with Gerlagh and Liski (2018)
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Figure 13: Warming in response to cumulative CO2 emissions, comparing the CMIP5 multi-model
mean with Lemoine and Rudik (2017)
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Figure 14: Warming in response to cumulative CO2 emissions, comparing the CMIP5 multi-model
mean with FAIR

2000 3000 4000 5000 6000 7000 8000

Cumulative Emissions GtCO2

1

1.5

2

2.5

3

3.5

4

4.5

G
lo

ba
l w

ar
m

in
g 

(°
C

)

RCP 2.6

RCP 4.5

RCP 6.0

RCP 2.6

RCP 4.5

RCP 6.0

RCP 8.5

RCP 8.5

IPCC AR5 model mean
FAIR

62


