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Abstract

The COVID-19 pandemic is a global threat that has caused the lockdown of

about one half of the world’s population for weeks. Containing the epidemics comes

however at a very large economic and welfare cost, so that lockdown is being re-

moved in many countries. We model the dynamics of the epidemics after (full or

partial) lockdown removal, incorporating the equilibrium behavior of individuals.

Individuals optimally choose self-protection efforts (a reduction in contacts) given

their risk aversion, beliefs and perceptions, utility from contacts, effectiveness of ef-

forts, and the current prevalence of the disease. We show that contrary to imposed

social distancing, individually optimal self-protection does not lead to a constant

reduction in contacts intensity. In equilibrium, self-protection efforts adjust at each

date in a non-proportional way given the number of reported cases. We calibrate

the model on French data. The general dynamics of epidemics differs markedly from

the one obtained when neglecting to account for equilibrium self-protection efforts.

It involves a rebound in the epidemics, with a peak number of cases that is about

1/10th of the one with business-as-usual, and a cumulated number of deaths that

is about 1/6th lower.
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1 Introduction

The COVID-19 pandemic started in Wuhan, in December 2019. The World Health Or-

ganization (WHO) recognized it as a pandemic on 11 March 2020. On the 13th of May

2020, more than 4.1 million cases of COVID-19 have been reported in over 212 countries

and territories over the world resulting in more than 292,000 deaths worldwide – more

than 82,000 deaths in the US, than 30,000 in the UK and Italy, 26,000 in France and

Spain ([25]). As no treatment or vaccine exists yet, the only way to contain the spread

of the epidemics is lockdown, to ensure maximal social distancing. Maier and Brock-

mann (2020) show that lockdown (and the ensuing social distancing) has been effective at

curbing the spread of the epidemics in China, despite an initial exponential growth (expo-

nential growth has been observed e.g., in Italy, France, Great Britain and the US). Social

distancing measures have also been more effective in China than mobility restrictions [14].

In this context, compliance with social distancing during lockdown but especially at the

end of the lockdown period is an essential determinant of the dynamics of the epidemics.

While Zhang et al. (2020) show that contacts have been reduced 7- to 8-fold in Wuhan

and Shanghai, which has contained the epidemics, such a drastic reduction may not be

imposed for a long period of time in most countries, and involves extremely large economic

and welfare costs. It is therefore particularly important to model individual behavior after

lowkdown to be able to simulate dynamics and possible rebounds.

The aim of this paper is to integrate in a SIRU epidemiologic model, an economic

model of self-protection choices. After lockdown ends, individuals will choose how much to

maintain some social distancing effort, and how much to undertake other efforts that help

reduce virus spread, such as wearing a mask, washing hands, etc. Because these efforts are

individual choices in most countries, in the process of going back to normal, they should

be explicitly modeled. Doing so enables us to assess the impact of important variables

on individual choices, and thereby on the spread of the virus: These variables include

the degree of risk aversion, the psychological and monetary attractiveness of contacts and
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the perceived efficiency of various self-protection measures, in addition to the epidemics

prevalence and severity of the disease.

This article studies how individual choices interact with the dynamics of the epidemics.

Because individuals do not internalize the positive impact of their prevention efforts on

others, their choices are typically inefficient and exhibit too little prevention. This is a

well-known feature of vaccination decisions for instance, and justifies public intervention.

In the context of the Covid-19, the prevention effort consists in reducing the number and

intensity of contacts with others in the population. As for vaccines, the positive externality

generated by more effort (more reduction in the number of contacts) can justify imposing

lockdown on individuals. However, once lockdown will be removed, individuals will be

free to choose the intensity of their contacts with other individuals, and a rebound of

the epidemics may occur. We focus on how individuals’ perception of the infection risk

(given the specificity of the Covid-19), their perception of the severity of the disease, and

their degree of risk aversion, together determine their behavior, and how this behavior,

in turn, determines the dynamics of the epidemics. Importantly, because there are many

asymptotic infected individuals, and because of the salience of the epidemics in the media

and public discourse, risk perception is likely to be much higher than the risk computed

based on reported cases. We show that perceptions and attention to the infection risk

are very important drivers of the epidemics. This highlights the potential effectiveness of

policy measures to credicly communicate concern about infection risks.

There is ample evidence that individuals change their behavior in reaction to an epi-

demics. In a documented study about the SARS 2003 epidemics in Hong-Kong and

Singapore, Ferguson [7] describes how the epididemic modified individual behavior, espe-

cially with respect to social contacts. Based on a survey on H1N1 and SARS, Balinska and

Rizzo [2] show that epidemics induce behavioral changes that then affect the spread of the

epidemics. This change of social behavior has also been stressed for the HIV epidemics

in San Francisco in the gay community (Mc Kusik et al. [18]) and in Africa (Green et al.
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[11]).

Much theoretical work has shown that taking into account the bahavior of individuals

modifies the spread of the epidemics. D’Onofrio and Manfredi [21] present a survey of

these models, since the seminal work of Capassio and Serio ([4]). Surveys on behavior

and epidemics have also been realized by Funk et al ([8]) from papers published before

2010 and Verhelst et al. [23] (from 2010 to 2015). Most of the behavioral models concerns

vaccine uptakes.

Behavioral models differ one from another on the way individuals perceive prevalence

(which is based on the information which is avalaible to make one’s own judgement, Funk

et al. [8]), and on the way in which individals evaluate risk. D’Onofrio and Manfredi [21]

propose a general form written as a delayed function of a general form of prevalence. The

aim of the individual is then to choose the optimal strategy that maximizes her expected

utility. In most models, individuals are risk neutral. A novelty of our approach is that

we incorporate risk aversion and self-protection efforts to our epidemiological model.

The aim of our work is to understand how the intensity of contact and other self-

protection efforts are endogeneously chosen by the individual and how this in turn changes

the epidemics dynamics. Our model differs from previous models because the only infor-

mation which is available to an individual is the number of (either newly or cumulative)

reported cases or deaths, and individuals maximize their utility over some self-protection

effort [13]. As far as the COVID-19 epidemics is concerned, the transmission of the dis-

ease is mainly due to either exposed or unreported cases. We study how the intensity of

contacts depends on prevalence and risk perception, perception of health loss due to the

disease and risk aversion. We then use the characterization of the optimal self-protection

efforts to understand how the epidemics dynamics is modified.

Self-protection consists in an action that reduces the probability of becoming infected

[6]. We study a first type of self-protection effort: It entails a utility loss and is partic-

ularly adequate to model contacts reduction, that have both psychological and financial
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consequences that are risky in the sense that they depend on one’s health status. We then

add the possibility for the individual to also make a second type of effort. This second

type of effort entails a deterministic cost (such as an upfront payment or a discomfort)

and is more adequate to model wearing a mask and other protective measures, includ-

ing washing hands, that require initial changes in habits, and time and attention. We

study the substitutability / complementarity of the two types of effort. Being able to use

two types of instruments to reduce one’s risk of infection does not necessarily ultimately

reduce the infection risk. We also study the effectiveness of public measures to impose

partial confinement (for a proportion of the population) and the impact of the salience of

the disease. We show that even with a large overestimation of the probability of getting

infected compared with available data (due to strong salience for instance), individual

efforts are not sufficient to avoid sizable rebounds. The evolution of the epidemics is

however very dependent on individual efforts and on behavioral parameters.

1.1 Our approach

Our modeling of the dynamics of the epidemics is original in that we incorporate features

specific to the virus as well as features specific to human behavior. Among the former, a

prominent element is the uncertainty about the proportion of non immunized, contagious

individuals. Among the latter, we focus especially on risk aversion, that affects the choice

of the number of contacts for each individual, and on the length of the lockdown period,

that affects the desirability of contacts.

The SIR model much used in the litterature is ill-fitted to study the Covid-19, because

of the importance of asymptomatic infected individuals. While this category of individuals

can easily be added to the dynamic structure of the model, this is not sufficient to fully

account for its role in the dynamics of the epidemics. One of the consequences of infection

via asymptomatic individuals is that it generates additional uncertainty.

The fact that many individuals may be infected (and contagious) without exhibiting
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symptoms indeed creates an intrinsic uncertainty about the probability of being infected.

Not only are individuals unable to observe the real state of others in the population,

and themselves; Scientists also face much uncertainty about the proportion of asymptotic

infected individuals, so that one cannot easily use statistics to correct for the lack of ob-

servability. We highlight how this characteristic of the disease leads to an underestimation

of the real probability of becoming infected, and hence the choice of an excessive number

of contacts.

We model how the individual perception about the infection risk is based on the num-

ber of new reported cases, which is the prominent information available in the media. But

this number falls short of the real number of contagious individuals, given the proportion

of asymptomatic cases. Because an individual will optimally choose her prevention effort

(or equivalently, optimally choose the intensity of the contacts she has with other individ-

uals), this bias in perception will have a strong impact on the dynamics of the epidemics.

Risk aversion may to some extent mitigate this bias.

We model important features of the choice of contacts intensity, that may differ across

individuals but may also vary according to the length of the lockdown period: Risk

aversion, the desirability of contacts, the perceived severity of the disease, the attention

paid to reported cases. Our model thus links the specifics of the epidemics to individual

decisions under the intrinsic uncertainty generated by the epidemics, and subsequently to

the spread of the epidemics itself.
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2 The model

2.1 The epidemiological system

Our model of the epidemics is based on Liu et al. ([15],[16]) and is given by System 1:

S ′ = −τ(t)S (I + U) (1)

I ′ = τ(t)S (I + U)− νI

R′ = fνI − ηR− δR

U ′ = (1− f)νI − ηU

with initial data

S(t0) = S0, I(t0) = I0, R(t0) = 0, U(t0) = U0.

I(t) is the number of infectious asymptomatic individuals, R(t) the number of severe

symptomatic infectious individuals, who are tested COVID-19 and classified as Reported

and U(t) the number of mild symptomatic infectious individuals, who are undetected. S(t)

is the number of individuals susceptible to be contaminated by the infectious I(t) and

U(t). We assume that infectious severe symptomatic are not active in the transmission

of the disease because they are isolated.

Contaminated susceptible individuals then become infectious asymptomatic for an

average time ν−1. Then, a fraction f of infectious asymptomatic develop severe symptoms,

which last for a mean time η−1. However, severe asymptomatic individuals may die at

rate γ. A fraction 1−f of infectious asymptomatic individuals become mild symptomatic

and lose infectiousness after an average time η−1.

The transmission rate τ (t) depends on the infectiousness of the disease but also on

a behavioural component, the number of contacts by time unit. We assume that before

individuals take any social distancing measures τ (t) = τ0. The impact of reducing social

contact ϕ(t) ∈ [0, 1] lowers the transmission rate so that τ (t) = τ0ϕ(t).
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We assume that lockdown is applied at time t1 > t0 and is lifted at time t2 > t1. For

t ∈ [t0, t2], ϕ is exogenously given by Equation (2). This formulation has been considered

in Chowell et al. [5] for Ebola disease and Augeraud [1] for COVID-19.

ϕ (t) =

 1 for t < t1

ϕ0 + (1− ϕ0)e−µ(t−t1), for t1 < t < t2.
(2)

Table 1 presents the parameters we consider
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Symbol Interpretation Value

t0 Time when the epidemic started February 3rd [17]

t1 Time when the lockdown started March 17th [[?]]

t2 Time when the lockdown ends May 11th

S0 Number of susceptible at time t0 66.99.106

I0 Number of asymptomatic infectious at time t0 3.675 [17]

U0 Number of unreported symptomatic 0.892 [17]

infectious cases at time t0

R0 Number of reported symptomatic 1

infectious cases at time t0

τ Transmission rate 4.23.10−9 [17]

γ Death due to the disease fitted

ν−1 Average duration of the asymptomatic infectious period 7

f Fraction of asymptomatic infectious who 0.4

become reported symptomatic infectious

ν1 = fν Rate at which asymptomatic infectious

become reported symptomatic infectious

ν2 = (1− f)ν Rate at which asymptomatic infectious

become unreported symptomatic infectious

η−1 Average time symptomatic infectious have symptoms 7

ε1 (t) intensity of contacts among unreported infected fitted

individuals at time t

ε2 intensity of contacts among reported infected individuals 0.0001

Table 1: Table of parameters

We are interested in understanding the behaviour of the individuals after the lift of

lockdown, that is for time t > t2. More precisely, we assume that from time t ≥ t2,

individuals will rationally chose the effort ε they would do to reduce their social contacts.
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Thus from time t ≥ t2, the impact of reducing social contact ϕ(t) is defined as ϕ(t) =

φ(ε(t)) where φ(ε) is the impact of doing an effort ε. The following paragraph explains

how ε is determined by individuals.

2.2 The individual’s preferences and perceptions

We assume that individuals are myopic (they are not able to compute and anticipate

the dynamics of the epidemics) and that each chooses to do an effort ε to reduce her

contacts, and thereby reduce her perceived probability of infection. Reducing contacts

creates a disutility, as it involves psychological costs and economic foregone opportunities

(reducing contacts may entail working only very few hours). The chosen self-protection

effort maximizes at time t ≥ t2 the individual’s expected utility defined as:

J (ε, y) = (1− p (ε, t; y))u (US, ε; y) + p (ε, t; y)u (UM , ε; y)

were p (ε, t; y) is the perception of the risk of being infected at time t and decreases in the

effort ε that the individual makes to reduce contacts. Function u (H, ε; y) is the utility

function, which depends on two variables: the well-being H ∈ {S,M} associated to having

(H = M) or not having (H = S) the disease, and the effort of reducing contacts, ε. It

may also depends on the type of the individual, y ∈ T, which density function is π. We

consider an homogeneous population in a first step of our study.

To obtain tractable solutions and to be able to assess the impact of risk aversion on

individual decisions, we make the following assumptions.

The utility function.

u (US, ε; y) =
U

1− 1
σ

S (1− θε)(1−
1
σ )

1− 1
σ

u (UM , ε; y) =
(λ (y)Us)

1− 1
σ (1− θε)(1−

1
σ )

1− 1
σ

, with 0 < λ (y) < 1
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with σ > 1 and θ > 0. We would assume in the following that US = 1.

Parameter σ measures the degree of risk aversion of the individual, θ is a measure of

disutility of the effort, and λ measures the perception of the individual about the severity

of the disease. All three parameters are fundamental determinants of the behavior of the

individual.

The risk perception. We assume that the perceived probability of being infected

p (ε, t; y) is computed as a function of the perceived prevalence of the disease (d’Onofrio

and Mandredi [21]) times the impact of the effort of reducting contact. The disease is

transmited by asymtomatic infectious and mild symptomatic infectious whose number is

unknown. The risk perception is thus computed by a proxy of these disease transmitter.

As the number of daily reported cases (fνI) is indeed one of the main information provided

by the media, we assume that the perceived prevalence of the disease is

k (y) τ0ϕ (t) ν1I

ν + k (y) τ0ϕ (t) ν1I

Parameter k (y) , which may depends on the type of the individual, can measure the

attention paid to this information by the individual, or the confidence the individual

gives to official information. Thus the perceived prevalence is computed by individuals

as a proportion k (y) > 1 of the number of daily reported cases at time t that amounts

to ν1I. The impact of reducing social contacts ϕ (t) depends on the average effort ε of

reducing contacts

ε =

∫
T

ε (y) π (y) dy

To explicit the dependence on the average effort , we denote the perceived prevalence of

the disease

π (I, ε; y) =
k (y) τ0φ (ε) ν1I

ν + k (y) τ0φ (ε) ν1I
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The perceived probability of being infected can thus be written

p (ε, ε, I; y) = φ (ε) π (I, ε; y)

We consider Assumption 1

Assumption 1 We assume φ′ (ε) < 0, and φ (0) = 1, φ(2) (ε) ≥ 0, and that limε→0 φ
′ (ε) <

∞.

We consider the following as an example φ (ε) = 1− ε.

3 The behavioral model in a homogeneous popula-

tion

As we assume that all individuals have the same type, we will drop index y in this

paragraph.

3.1 Optimal effort to reduce contacts

Due to large population, one single individuals has on influence on the mean contact effort

ε, which is considerated as given for the optimization problem.

The optimal strategy ε ∈ [0, 1] maximizes expected utility fonction J (ε) . If interior

solution ε̂ exists, it satisfies J ′ε (ε̂) = 0, where

J ′ε (ε) = −p′ε (ε, ε, I) [u (US, ε)− u (UM , ε)]

+ (1− p (ε, ε, I))u′ε (US, ε) + p (ε, ε, I)u′ε (UM , ε)
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As J
(2)
ε (ε) satisfies

J (2)
ε (ε) = −p(2)ε (ε, ε, I) [u (US, ε)− u (UM , ε)]

−2p′ε (ε, ε, I)
[
u

′

ε (US, ε)− u′ε (UM , ε)
]

+ (1− p (ε, ε, I))u(2)ε (US, ε) + p (ε, ε, I)u(2) (UM , ε)

Thus J (ε) is a concave function. The optimal effort of reducting contact is ε∗ =

max (min (1, ε) , 0) .

More explicitely, denoting Λ = λ1−
1
σ , this yields

J ′ε (ε) = −φ′ (ε)π (I, ε)
(1− θε)1−

1
σ

1− 1
σ

[1− Λ]

−θ (1− θε)−
1
σ [1− φ (ε) π (I, ε) (1− Λ)]

The interior solution ε̂ thus satisfies

−φ′ (ε̂) (1− θε̂)
1− 1

σ

+ θφ (ε̂) =
θ

π (I, ε) (1− Λ)

As π′ε (I, ε) = κτ0φ′(ε)νfI
ν+κτ0φ(ε)νfI

< 0, ε̂ is a strictly decreasing function of ε. Indeed:

∂ε̂

∂ε
=

(
−π′ε (I, ε)

(1− Λ)

θ

π2 (I, ε)

)
1

−φ(2) (ε) (1−θε)
1− 1

σ

+ θ
(

2− 1
σ

1− 1
σ

)
φ′ (ε)

< 0

The variation of ε̂ according to the other parameters of the model can be studied
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accordingly.

∂ε̂

∂Λ
=

(
−1

(1− Λ)2
θ

π (I, ε)

)
1

−φ(2) (ε) (1−θε)
1− 1

σ

+ θ
(

2− 1
σ

1− 1
σ

)
φ′ (ε)

> 0

∂ε̂

∂I
=

(
−π′I (I, ε)

(1− Λ)

θ

π2 (I, ε)

)
1

−φ(2) (ε) (1−θε)
1− 1

σ

+ θ
(

2− 1
σ

1− 1
σ

)
φ′ (ε)

> 0

∂ε̂

∂σ
=

−1

−φ(2) (ε) (1−θε)
1− 1

σ

+ θ
(

2− 1
σ

1− 1
σ

)
φ′ (ε)

(
φ′ (ε)

(1− θε)
(σ − 1)2

)
< 0

However, the sign of ∂ε̂
∂θ

is ambiguous.

∂ε̂

∂θ
= −

(
ε̂φ′ (ε̂)

1− 1
σ

+ φ (ε̂)− 1

π (I, ε) (1− Λ)

)
1

φ(2) (ε̂) (1−θε̂)
1− 1

σ

+ θφ′ (ε̂)

The Best Response function.

Optimal contact effort, given the average contact effort accross the population can

be seen as a function of the infecAs ∂ε̂
∂I
> 0, and according to Assumption 1 there exists

0 < I1 (ε) and I2 (ε) , with I1 (ε) ≤ I2 (ε) ≤ ∞, such that

ε∗ =


0, if I < I1 (ε)

ε̂, if I1 (ε) ≤ I ≤ I2 (ε)

1, if I ≥ I2 (ε)

The best response function gives the optimal solution ε∗ as a function of the other

player behavior, here ε. It is denoted ε∗ = BR (ε) .

For φ (ε) = 1− ε, the interior solution ε̂ is given by

BR (ε) = min

(
max

(
σ

θ (2σ − 1)
− (ν + Λkτ0 (1− ε) ν1I) (σ − 1)

kτ0 (1− ε) ν1I (1− Λ) (2σ − 1)
, 0

)
, 1

)

The special case of risk neutrality. In order to better see the effects at play, one can
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consider the case of a risk neutral individual. Then her utility function is

J ′ε (ε) = [−p′ε (ε, t) (1− θε) + θp (ε, t)] (1− λ)− θ

In the absence of risk aversion, the determinants of the self-protection effort are easier

to interpret: The optimal effort to reduce contacts is obtained by equating the value of

avoiding to become ill, i.e., the additional utility obtained when remaining sane, US−UM =

(1−λ)(1−θε) with the marginal desutility of reducing one’s contacts for a unit reduction

in the probability of becoming ill, i.e., −θ(1−p(ε)(1−λ))
p′(ε)

:

(1− λ)(1− θε∗) =
θ(1− p(ε∗)(1− λ))

−p′(ε∗)

Nash Equilibrium

As the population is homogeneous, the Nash Equilibrium is defined by

ε = BR (ε)

For φ (ε) = 1− ε, the Nash Equilibrium solves

ε = min

(
max

(
σ

θ (2σ − 1)
− (ν + Λkτ0 (1− ε) ν1I) (σ − 1)

kτ0 (1− ε) ν1I (1− Λ) (2σ − 1)
, 0

)
, 1

)

If the Nash Equilibrium is an interior solution, letting φ̃ = 1− ε, we have

φ̃ = 1− σ

θ (2σ − 1)
+

(
ν + Λkτ0φ̃ν1I

)
(σ − 1)

kτ0φ̃ν1I (1− Λ) (2σ − 1)

z is a solution of the order 2 polynomial P (z) = 0, where

P (z) = φ̃2 −
(

1− σ

θ (2σ − 1)
− Λ (σ − 1)

(1− Λ) (2σ − 1)

)
φ̃− ν (σ − 1)

kτ0ν1I (1− Λ) (2σ − 1)
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The polynomial admits exactly one positive root

φ̂ =
1

2

(
1− σ

θ (2σ − 1)
− Λ (σ − 1)

(1− Λ) (2σ − 1)

)
+

1

2

√(
1− σ

θ (2σ − 1)
− Λ (σ − 1)

(1− Λ) (2σ − 1)

)2

+ 4
ν (σ − 1)

kτ0ν1I (1− Λ) (2σ − 1)

To emphasize the dependency of the Nash equilibrium on I, we denote the Nash

Equilibrium

ε∗ (I) = min
(

max(1− φ̂, 0), 1
)

The related impact function is φ∗ (I) = min
(

max(φ̂, 0), 1
)
.

Consequences on the spread of the epidemics now need to be studied.

3.2 The induced epidemics dynamics

In a homogeneous population, the reduction effort is ε∗ previously defined. We consider

it a function of I and denote it ε∗ (I) .

The population dynamics satisfies

S ′ = −βφ∗ (I)S (I + U)

I ′ = βφ∗ (I)S (I + U)− νI

R′ = ν1I − ηR− δR

U ′ = ν2I − ηU

with initial data

S(t0) = S0, I(t0) = I0, R(t0) = 0, U(t0) = U0

Note that computing the reproduction numberR0 makes little sense in our problem: it

indicates how many individuals would be contaminated by one individual in a succeptible

population during the length of her infectiousness. We are instead concerned with the
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epidemics dynamics after a lockdown period, with a large part of the population already

infected.

Calibration on French data. We calibrate the model given by Liu et al. [?]. The

simulation and the actual data are given on Figure ??. It corresponds to τ0 = 4.238.10−09,

I0 = 3.675, R0 = 1, U0 = 0.8927, with t0 being February the 3rd. We have assumed that

during lockdown, the intensity of the contact is time dependent and given by βe−µ.t with

µ = 0.65. The other parameters are: f = 0.4, η = 1/7 and ν = 1/7, with ν1 = fν and

ν2 = (1− f)ν.

Figure 3.2 presents our simulations compared to data of the Public Heath Agency

from February 25th to April 27th on daily number of reported cases and deaths (Figure

3.2 , (a)) and on cumulative number of reported cases and deaths (Figure 3.2 , (b)).

Parameters ε11 and µ have been chosen such that ε11 = 0.1088265, µ = 0.11

(a) (b)

Figure 1: Daily number of reported cases and deaths (a). Cumulative number of reported

cases and deaths (b).

One can note that the fit is very good for death cases, despite their lower number,
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and less so for infected cases. This is because information on reported infected cases is of

lower precision. Cumulative cases are fitted with a better precision.

The impact of self-protection. Figure 2 compares the number of reported cases and

deaths with no reduction in contact intensity (dashed curve) and with rationally chosen

contact intensity (plain curve). The optimal effort depends on perception parameters

(here λ = 0.00001 and k = 15) and on the risk aversion parameter (here σ = 1.5, in

line with the literature, Havranek 2015). Desutility of effort θ is chosen as θ = 0.1. A

linear intensity of the contact φ has been chosen, with q = 0.15. It can be seen that

rational behavior does not prevent a ‘rebound’, that is the re-emergence of an epidemic

outbreak after lockdown. However it lowers its magnitude; by doing so, it slows down

herd immunity, so that the epidemic outbreak lasts longer.

(a) (b)

Figure 2: Comparison of epidemiological dynamics with rationally chosen effort (plain

curves) and no effort (dashed curves. Daily reported cases (a) and cumulative deaths (b).

The corresponding reduction in contact intensity is given in Figure 3. Just after the

lockdown, as perceived prevalence is low, contact intensity is equal to 1, and it lowers as

soon as the perceived prevalence increases.

18



Figure 3: Contact intensity φ(ε) (blue curve) and perceived prevalence (red curve) (a).

Rationally chosen effort ε (b).

Interestingly, individuals do not maintain a very high effort level at all times. To the

contrary they adapt their self-protection effort in such a way that the number of cases

reaches a plateau.

More optimistic perception of the consequences of the disease. Assume now that the

utility obtained when one is sick is a higher proportion of the utility when sane. We model

this as a higher λ: For λ = 10−3, simulations are given on Figure 4.
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(a) (b)

(c)

Figure 4: Impact of optimally chosen effort on daily reported cases (a), on the cumulative

number of deaths (b) and on contact intensity φ(ε) (c) for λ = 10−3 and k = 15.

Increasing the perceived infection risk. A public policy may lead to increasing the

perceived infection risk (for instance through increased media coverage of serious cases).

This can be modeled in our framework as in increase in the weight k that the individual

attaches to available data (reported cases). We consider k = 30 (instead of k = 15), which
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gives the results in Figure 5.

(a) (b)

(c)

Figure 5: Impact of optimally chosen effort on daily reported cases (a), on the cumulative

number of deaths (b) and on contact intensity φ(ε) (c) for λ = 10−3 and k = 30.

Imposing prolonged lockdown on a proportion of the population. We now consider the

impact of a public policy of partial lockdown on the epidemiological dynamics and on the

behavior of individuals. We assume that lockdown is still imposed on one third of the
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population. The result of this policy is given in Figure 6. The result of maintaining in

lock down 1/3 of the population is represented by the green curves.

(a) (b)

(c) (d)

Figure 6: Impact of maintaining lockdown for 1/3 of the population, on daily reported

cases (a), on the cumulative number of deaths (b) and on contact intensity φ(ε) (c) and

on effort (green curve is for individual effort, and red curve for collective effort) (d) for

λ = 10−3 and k = 30.
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Figure 7 considers the same kind of policy, lockadown affecting 60% of the population.

The result is given by the green curves.

3.3 Discussion

It is very clear that individual choices regarding self-protection have an important impact

on the dynamics of the epidemics.Individuals adapt their self-protection effort in such a

way that the number of reported cases reaches a plateau.

Freely chosen self-protection efforts are however not high enough to avoid a sizable

epidemic rebound. And this holds even though we assume that individuals strongly

overestimate the infection probability that can be computed from available data, as rep-

resented by parameter k (varying the size of this parameter changes the number of cases

and deaths on a given period, but the profile of the epidemics remains the same).

The equilibrium self-protection effort to reduce contacts leads to a spread in infected

cases, with a much lower maximum number of cases on a given date, but a much longer

duration of the epidemics. Imposing prolonged lockdown on some proportion of the

population leads to the same type of dynamics, with a still lower maximum number of

cases and still longer duration of the epidemics. The number of deaths is very dependent

on individual efforts and on public policies, both leading to a strong reduction compared

with the situation in which individuals would not self-protect at all (as assumed in most

epidemiological models).
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