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Abstract

This paper presents an extension of a probabilistic modeling approach to the

generation expansion problem including renewable energy sources, where a prob-

abilistic constraint on the supply-demand constraint is imposed. In this setting,

the energy manager decides upon installed capacities and does not consider the

worst case scenarios which are not in the scope of the probabilistic bound. We

extend this model, by penalizing the worst case scenarios in which a power short-

fall occurs. These additional payments, which come as the expected costs of a

short power supply can be interpreted using techniques of risk management via

the conditional value-at-risk and e�ect the energy manager's investment decision

who evaluates riskiness of power supply. This corresponds to the situation, where

the energy manager balances supply and demand in the worst scenarios at the elec-

tricity wholesale market. We investigate the energy manager's investment policy in

renewable energy technologies in a deterministic price scenario, which corresponds

to purchasing balancing energy via a �xed-price contract and a stochastic price

scenario, which corresponds to purchasing residual power at the spot market. The

application to a use case without a feed-in-tari� quanti�es the threshold energy

price of a �xed-price contract below which the energy manager is reluctant to in-

vest in renewable energy technologies. Energy managers who purchase power at

the spot market, where the spot price and the energy park's power output are

independent, increase investment in renewable technologies with increasing spot

price uncertainty to hedge against spot price volatility.
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1 Introduction

The energy manager of an industrial �rm aims at developing an energy policy that covers

the �rm's energy demand at minimum costs. Structural changes in the electricity mar-

ket like the ongoing integration of renewable energy sources (RES)1, the liberalization of

the energy market and volatile electricity prices has led to an increased focus on incor-

porating risk management into strategic energy planning of industrial �rms (Liu et al.,

2006). In the liberalized energy market, large electricity consumers facing energy plan-

ning problems constitute a power procurement policy by negotiating contracts with the

retailers (Gómez-Villalva and Ramos, 2004). Besides this, industrial �rms also consider

the opportunity to invest in RES and thereby act as prosumers by covering the demand,

at least to some extent via self-generation facilities. In the trend of decreased prices of

renewable energy technologies (given in terms of the costs per installed capacity of a

speci�c technology) (Carlsson et al., 2014), the opportunity to invest in RES becomes

increasingly valuable, not only from an ecological but also from an economical point

of view. Industrial consumers taking this opportunity consequently face the generation

expansion problem (GEP). Among several other questions which have to be answered

in the course of the GEP, one of the most fundamental is to determine optimally in-

stalled capacities of the di�erent technologies, resulting in the optimal energy portfolio

(Koltsaklis and Dagoumas, 2018).

Ubiquitous investment risks of the GEP in the power sector arise because future cash

�ows depend to a large extent on risky electricity and fuel/carbon price (Tietjen et al.,

2016). High penetration of intermittent power technologies however, introduces addi-

tional uncertainty in the power output. Approaches which incorporate methodologies

of risk management allows the energy manager to make a decision in an uncertain envi-

ronment. One approach to obtain robust solutions in optimization problems including

1The International Energy Agency (IEA) forecasts that worldwide shares of RES will increase to 57%
by 2050 (IEA, 2012).
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uncertainty, is given by the implementation of probabilistic constraints in stochastic

optimization problems. This approach is bene�cial when it comes to considering the

intermittent and unpredictable character of renewable energy technologies. The use of

probabilistic constraints in optimization problems goes back to the work of Charnes and

Cooper (1959) and was later used in various �elds, ranging from applications in �nan-

cial regulatory problems up to design problems in engineering. Among various other

disciplines, this approach also gains increasing attention in the �eld of energy economics

(Geng and Xie, 2019). In the course of a probabilistic modeling approach to the GEP, a

probabilistic guarantee is imposed via an ex-ante chosen level of reliability, with which

the stochastic supply-demand constraint associated with the energy park has to hold

true. In this formulation, the level of reliability is an exogenous variable in the model,

imposed by the energy manager. The probabilistic constraint can be equivalently formu-

lated in terms of the value-at-risk with a certain con�dence level β, denoted by VaRβ,

which is de�ned via the quantile of the stochastic power shortfall.2 Besides the clear

interpretation of the VaRβ, it can have some drawbacks, e.g. that only the frequency

of scenarios exceeding the probabilistic constraint is considered but not the extent of

violation. The indi�erence of the VaRβ risk measure to extreme tails therefore does not

re�ect the losses in these worst-case scenarios which are not in the scope of the proba-

bilistic bound and are therefore discarded as non responsive scenarios (Sarykalin et al.,

2008).

This is of special importance in the GEP, where the energy manager - in case of a power

shortfall - has to purchase residual power at the electricity wholesale market, which may

come at a high price. However, in case of a probabilistic modeling approach where the

energy manager opts for an �energy-autarchy� design with a probabilistic guarantee, the

costs associated with the worst case scenarios are not considered. Imposing high levels

of reliability corresponds to a situation, where the energy manager installs high capac-

2In this setting, the probabilistic constraint imposes a lower bound on the VaRβ .
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ities referring to idle costs, which are used on rare occasions and can be economically

infeasible. Thus, it is bene�cial for the energy manager to choose the level of reliability

by balancing the expected costs of purchasing energy at the wholesale market against

idle costs.

In this paper we propose a probabilistic modeling approach to generation expansion

planning, where a �here-and-now� decision of RES capacities has to be made. In this

framework, the energy park is considered in a scenario without a feed-in-tari�, where

no opportunity to feed the self-generated electricity into the grid exists. We extend

this framework and explore the energy manager's optimal investment policy in renew-

able energy technologies, which are associated with a volatile power output, when the

possibility to procure power at the electricity wholesale market also exists. Purchasing

power at the market therefore might come as opportunity costs of a power shortfall. The

power available from the self-generation facilities depends on the stochastic in�uence of

the weather conditions, which introduces risks in the power output. We include the

resource option to purchase power at the electricity wholesale market in order to bal-

ance these risks. In contrast to an approach imposing a probabilistic constraint on the

supply of the energy park, the energy manager explicitly considers the expected costs in

those scenarios, where the supply falls short of the demand (which occurs with a prob-

ability speci�ed by the level of reliability). Therefore, the energy manager introduces a

penalty on the power shortfall, which is additionally incorporated in the total costs of

power procurement. Introducing a penalty on the power shortfall corresponds to the re-

source decision to purchase additional power e.g. at the electricity futures market or the

spot market. This penalty can be formulated in terms of the conditional value-at-risk

(CVaRβ), which is introduced in Rockafellar et al. (2000) and re�ects upon the risks in

the extreme tails.

The rest of the paper is organized as follows: Section 2 gives an overview of the
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relevant literature. The energy manager's investment model is introduced in Section

3. Section 4 presents the use case as well as the results of the optimization. Section 5

concludes the paper.

2 Literature overview

In a more general setting, optimal capacity expansion models for the �rm have been

addressed early in Manne (1961). This problem can be considered in a real options

framework, in which optimal investment timing is determined (Dixit et al., 1994). Dangl

(1999) discusses an investment problem, where a �rm has to determine optimal invest-

ment timing and optimal capacity choice simultaneously under demand uncertainty. A

general result which highlights the e�ect of uncertainty is, that the �rm invests later in

a larger quantity for higher levels of uncertainty.

From a private investor's perspective, a major concern when investing in RES is given

by the fact that renewable energy technologies are capital intensive with high �xed costs.

Mean variance portfolio theory has been applied in several studies (Awerbuch, 2000;

Awerbuch and Berger, 2003; Awerbuch and Yang, 2007) which shows that adding RES

in a portfolio of conventional plants with volatile fuel costs lowers portfolio risk for a given

level of costs (Tietjen et al., 2016). This, together with the trend of decreasing prices

of investment goods for renewable energy technologies, which are forecasted to continue

this trend (Carlsson et al., 2014), makes investing in RES increasingly valuable from an

economic point of view. High penetration of intermittent power facilities increases the

variability of the energy park's power output. In case of a power shortfall, the energy

manager balances supply and demand at the electricity wholesale market which includes

the option to consume power at the spot market or via forward contracts. Moreover,

as spot prices are volatile, the energy manager can use �xed price forward contracts to

hedge against this spot price volatility.
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An early application of using forward contracts as risk sharing instruments for spot

price risks in the electricity market is conducted in Kaye et al. (1990). Woo et al. (2004b)

consider an electricity distribution company and approach the problem of determining

the optimal amount of forward electricity to reduce the exposure to inherent risks of spot

price volatility. Based on this model, an e�cient frontier of tradeo� between expected

cost and cost risk measured in terms of cost variance is constructed in (Woo et al.,

2004a). In this constrained least cost setting however, the authors do not include the

opportunity to invest in self-generation facilities. Bjorgan et al. (1999) discuss hedging

using future contracts and also investigate how production scheduling of non-intermittent

technologies can be used to reduce overall risk, where stochastic input variables are

assumed to be normally distributed. Conejo et al. (2008) consider an existing energy

park with thermal power plants and addresses the problem to optimally invest in the

electricity futures market, where price uncertainty is described by a set of scenarios.

3 The model

To incorporate the unpredictability of the power output associated with RES, we impose

a stochastic modeling approach. The energy manager aims at minimizing power pro-

curement costs where the stochastic hourly supply-demand constraint has to hold true.

This includes costs associated with the investment decision in RES and excess payments

in case of a power shortfall of the energy park. The investment time is assumed to be

exogenously �xed and the energy manager has to make a �here-and-now� decision re-

garding the installed capacities. From the prosumer's point of view, the self-generation

facilities are used primarily for own consumption and therefore we consider a scenario

without a feed-in-tari�.3

3In this case, excess power can neither be sold in the market nor stored in the absence of a storage
device and therefor has no economic value. However, in case of a shortfall, there is an outside option
of last resort to purchase energy at the spot market.
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Increasing installed capacities decreases the risk of a power shortfall but comes along

with high investment costs. These investment costs become exceptionally high, whenever

a very low level to risk exposure is required. High capacities, which are needed to cover

the demand in the few worst case scenarios can therefore be economically ine�cient

compared to the case, where the energy manager purchases residual power at the market.

To account for an economically optimal solution of the investment problem, the energy

manager evaluates the investment costs of the energy park and additionally introduces a

penalty in case of a power shortfall. The penalty re�ects the costs of the resource decision

to procure residual power to cover the demand dt at the balancing market. The energy

park can supply the total power x1Pt, where x denotes the vector of installed capacity

of the power sources and Pt denotes the random vector of output power available per

capacity installed at time t. To evaluate the excess payment which occurs in case of

a power shortfall ftpxq “ maxtdt ´ x1Pt, 0u, the energy manager introduces the loss

function, which penalizes the power shortfall over the planning period c

ltpxq “ cξtftpxq, (1)

where ξt is the unit price of the power shortfall at time t.4 In terms of the supply and

demand this can be equivalently written as

ltpxq “

$

’

’

&

’

’

%

cξtpdt ´ x1Ptq, x1Pt ď dt

0 x1Pt ą dt.

(2)

The loss lt itself is a random variable. Its distribution is induced by the joint distribution

of energy supply and demand. In a scenario without a feed-in-tari�, high capacities do

not constitute a gain, as excess energy can neither be stored nor sold. Whenever the

4In order to be able to compare the long-term investment decision with short-term excess payments,
these additional expenses are scaled up to typical investment periods of 25 years via the constant c.
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demand dt is higher than the total power available of the energy park, the loss is positive

and therefore requires excess payments to satisfy supply demand equality.

The mathematical formulation of the energy manager's GEP is given by minimizing

the expected total costs Cpxq of the energy park, which are given by the capital expen-

ditures and the expected excess payments in case of a power shortfall. Denoting the

price per installed capacity of the renewable energy technologies by pi and introducing

the constant c which scales the hourly measured values up to the planning horizon5 the

total costs are given by

Cpxq “ p1x` Ercξtftpxqs. (3)

By the law of total probability, the expected excess payments can be split into two parts

Cpxq “ p1x` Ercξtftpxq|ftpxq ą 0s ¨ Prtftpxq ą 0u

` Ercξtftpxq|ftpxq ď 0s ¨ Prtftpxq ď 0u

(4)

Let us denote the energy park's level of reliability by β “ Prtftpxq ď 0u. According

to this de�nition, we �nd due to ξt ě 0 that for the value at risk VaRβpξtftpxqq “

VaRβpftpxqq “ 0 holds true. By de�nition of the power shortfall, the expected costs in

case of the energy park supplying enough power are zero and hence the costs are given

by

Cpxq “ p1x` cp1´ βqErξtftpxq|ftpxq ą 0s

“ p1x` cp1´ βqCVaRβpξtftpxqq.

(5)

This approach uses techniques of risk management, since calculating expected additional

costs of purchasing external power coincides with measuring losses via the conditional

5i.e. in the use case where we consider a daytime model with 8h per day and a life span of the energy
park of 25y the constant is given by c “ 8 ¨ 365 ¨ 25
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value-at-risk (or expected shortfall) with con�dence parameter β which is de�ned by the

energy park's level of reliability and depends on the installed capacities, i.e. β “ βpxq.

In case the energy manager consumes additional power at the spot market, and the spot

market price and power shortfall are assumed to be independent, the total costs are

given by

Cpxq “ p1x` cp1´ βqErξtsCVaRβpftpxqq. (6)

In reality, however, we expect a positive correlation of ξt and ft, i.e. whenever there is

short supply, spot prices tend to be high. If pre-contracted, the �xed price ξt is constant.

The CVaRβ introduced in Rockafellar et al. (2000) re�ects upon the risks on the ex-

treme tails by computing [. . .] the conditional expectation of losses above that amount

of the VaRβ (Rockafellar et al., 2000). Tekiner-Mogulkoc et al. (2015) show, that the

energy manager's attitude towards risk plays a fundamental role in the investment deci-

sion. Therefore, we consider an energy manager who measures the riskiness of electric-

ity supply using the concept of the conditional value-at-risk. Moreover, the con�dence

parameter β re�ects upon the conservatism introduced by the energy manager. For

values of β closer to 1, the energy manager considers more unlikely events. In the limit

β Ñ 1, the situation corresponds to a robust optimization problem, where the �worst-

case� scenarios are considered (Anderson et al., 2019). In the energy manager's GEP the

con�dence level β corresponds to the energy park's level of reliability in a �stand-alone�

application. For values β Ñ 1 the energy manager opts for an energy-autarchy scenario

in which the capacities of the technologies are designed in a cost-minimal way such that

the energy park alone can supply the demand. The mathematical formulation of the
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energy manager's investment problem is given by

min
x

p1x` p1´ βqCVaRβpltpxqq

x P Ω,

(7)

where the CVaRβ is computed according to the underlying loss function ltpxq. The set

Ω “ tx P Rn : xi ě 0, i “ 1, . . . , nu restricts the installed capacities to positive values

and n denotes the number of di�erent technologies involved in the generation expansion

problem. In the course of the investment decision, the energy manager has to shape

the risk distribution via adapting the amount of installed capacity in order to �nd the

minimum of the total costs.

Rockafellar et al. (2000) show, that minimization problems including the CVaRβ can

be reformulated in terms of the function Fβpx, αq, which itself can be approximated via

a sample of the random variables with sample size N

Fβpx, αq « α `
1

1´ β

1

N

N
ÿ

i“1

”

l
piq
t pxq ´ α

ı`

, (8)

where α denotes the VaRβ and the superscript in the brackets denotes an empirical

sample. The second term in this equation measures the additional payments above that

of the VaRβ and is referred to as the excess reserve. In terms of a sample representation

of the optimization problem based on empirical observations, the energy manager has

to solve
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min
x,

z1,...,zN

p1x`
c

N

N
ÿ

i“1

zi

zi ě ξ
piq
t pdt ´ x1P

piq
t q

zi ě 0, @i “ 1, . . . , N,

x P Ω.

(9)

Therefore, the energy managers investment decision can be formulated as a linear pro-

gram.

4 Computational Simulations

4.1 The use case

We demonstrate the applicability of the model in the use case of a RES energy park

without a feed-in-tari� consisting of wind (i=1) and solar technology (i=2), respectively.

The energy manager decides upon the optimal mix of technologies and also includes

expected costs of purchasing residual power at the market. Uncertainty in the power

available from both technologies is modeled by translating empirical data on solar irradi-

ance and on wind speed via the physical energy model into supply of power. We sample

from real world output data of the solar irradiance and the wind speed in Schwechat,

Austria.6 A sample is generated via blockbootstrapping with a block size of three days

to incorporate short-term weather trends and contains hourly values of wind and solar

output power for one year to incorporate long-term weather characteristics. The demand

that has to be supplied by the energy park is assumed to be deterministic and constant

dt “ 1MW . The costs of investment are given in terms of the prices of the investment

6source: www.soda-pro.com (solar irradiance), www.mesonet.agron.iastate.edu (wind speed), location:
Schwechat, Austria, hourly data available from 2012 to 2018 in the daytime 10:00-17:00.
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goods per installed kW, where we consider two price scenarios based on Carlsson et al.

(2014): (i) the high price scenario of 2013, given by p1 “ 1400AC{kW for wind technology

and p2 “ 1000AC{kW for solar technology and (ii) the low price scenario of 2050, where

the price for wind technology is p1 “ 800AC{kW and the price for solar technology is

p2 “ 640AC{kW .

Moreover, we investigate the energy manager's investment decision in two alternative

scenarios of the outside option to purchase residual power at the market. First we

consider the case, where the energy manager includes a �xed price contract with price ξt

per purchased unit of power and inspect how the optimal investment strategy changes

with increasing price ξt. Furthermore, we compare this scenario with the stochastic price

scenario, where ξt is assumed to be random, which corresponds to the case of purchasing

power at the spot market.

4.2 Computational experiments

We perform 100 runs of the optimization problem, where in each run a sample of hourly

values of the associated power output is generated for one year.

Investment with �xed price contract

The �xed-price scenario ξt “ ξ corresponds to a deterministic penalty in the stochastic

loss function (2). The only source of uncertainty in this investment scenario is introduced

by RES availability risk. Due to the constant demand, the loss function is deterministic

when the energy manager decides not to invest in RES but to procure total power at

the market, which corresponds to the case β “ 0, i.e. Cpxq “ cξdt. In this case,

total costs increases linearly with the energy price and the option to consume total

power to cover the demand at the market introduces an upper bound of total costs,

i.e. investing in RES comes as opportunity costs. We observe, that the energy manager
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Figure 1: Fig.(a) shows the total costs of the energy park for the two price scenarios
of the renewable technology investment goods (solid line: reference case 2013,
dashed line: price scenario of 2050). The values are given in units of 106AC.
Fig.(b) shows the CAPEX in the high price scenario and Fig.(c) shows the
CAPEX in the low price scenario. Fig.(d) shows the shares of total cost in
high price scenario and Fig.(e) shows the shares of total costs in the low price
scenario. All values are the mean values of the 100 optimization runs.
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does not invest in capital intensive renewable self-generation facilities until the contract

price ξ exceeds a threshold price ξ˚ppq, see Fig.1(a), where the total costs are plotted.

This threshold price illustrates an investment barrier, which re�ects upon the energy

manager's willingness to invest in RES and is lower, the lower the associated prices of

the investment goods. This e�ect can also be veri�ed in Fig.1(b), where the CAPEX of

the energy park are illustrated in the high price scenario of the investment goods. In

the regime of low energy prices ξ ă ξ˚ppq, the energy manager is reluctant to invest

in renewable energy technologies and purchases total power to cover the demand at

the market. Whenever the energy price exceeds the threshold ξ ą ξ˚ppq, the energy

manager increases investment in renewable energy technologies. The CAPEX in the

low price scenario is given in Fig.1(c). In both price scenarios, the energy manager

opts for an diversi�ed technology portfolio. A similar e�ect can be obtained when

investigating the shares of total costs of both options, i.e. investment in the energy park

and consuming energy via �xed-price contracts given in Fig.1(d) in the high investment

price scenario and Fig.1(e) in the low investment price scenario. Whenever the energy

price exceeds the threshold price ξ ą ξ˚ppq the energy manager tends to balance out

investment in RES technologies and consuming power at the market for a wide range

of contract prices considered. Lower prices of the investment goods creates an incentive

for the energy manager to invest in RES. The increased willingness to invest in RES

can be observed in a shift of the amount of installed capacities of both technologies in

Fig.2(a) and (b), i.e. energy managers invest in higher renewable technology capacities.

Optimally installed capacities de�ne the energy park's level of reliability β, i.e. the

probability that the energy park alone supplies the demand in a �stand-alone� scenario.

We evaluate the level of reliability ex-post by estimating the energy park's capability

to supply the demand based on resampled scenarios, with an a-posteriori sample size of
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Figure 2: Fig.(a) shows the installed capacities of wind technology and (b) shows the
installed capacities of solar technology. Fig.(c) shows the associated ex-post
reliability level. All values are the mean values of the 100 optimization runs.
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N 1. The empirical level of reliability is then given by

β̂pxq “
1

N 1

N 1
ÿ

i“1

1
tx1P

piq
t ědtu

(10)

and is close (with accuracy ε) to the true value with con�dence greater than 1 ´ β1,

provided that for the a-posteriori sample size

N 1
ě

log 2{β1

2ε2
(11)

holds true (Cala�ore and Campi, 2005). The ex-post level of reliability in both invest-

ment price scenarios is given in Fig.2(c). With increasing prices above the threshold price

ξ ą ξ˚ppq, the energy manager increases optimally installed capacities which implies an

increasing level of reliability.

The e�ect of price uncertainty

Next, we consider the case where the energy manager faces the decision to invest in

RES or to purchase power at the spot market. In this setting, the price ξt in the loss

function (2) is assumed to be stochastic. Therefore, the energy manager considers two

potential sources of uncertainty in the investment decision which enables the occurrence

of potentially high losses. First, investment in RES introduces RES availability risk

and second spot price is also uncertain. The energy manager's problem is therefore

to simultaneously balance these risks and to �nd the optimal investment policy. To

investigate the energy manager's investment decision, spot market price is simulated via

a truncated normal distribution7 with mean µ and volatility σ.8 The plot of the energy

manager's optimal investment decision as a function of spot price volatility is given in

7We do not consider the possibility of negative prices and left-truncate the distribution at zero.
8In this framework, the volatility measures the uncertainty associated with the energy price at the
spot market and is assumed to be uncorrelated with the power output of the energy park's self
production facilities.
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Figure 3: The investment costs as a function of spot price volatility in the low investment
price case for µ “ 30AC{MWh. The simulations are carried out for values
σ{µ “ t0, 0.01, 0.05, 0.1, 0.5, 1, 2, 3u. The black line denotes the overall costs,
the red line corresponds to the partial investment costs in solar technology and
the blue line corresponds to the partial investment costs in wind technology.
All values are the mean values of the 100 optimization runs.

Fig.3(a) and (b) for both price scenarios considered.

The deterministic price scenario, corresponding to the case σ “ 0 has been discussed

in the previous section. With increasing spot price volatility σ ą 0 the energy manager

increases optimally installed RES capacities to hedge against the spot price risk at the

wholesale market, even if the expected energy price is below the investment threshold

µ ă ξ˚ppq established in the case of a �xed-price contract. Due to the occurrence of

multiple sources of uncertainty, the energy manager is sensitive to an increase in the

spot price volatility and increases investment in RES.

5 Conclusion

In this paper, we consider the generation expansion problem from an industrial con-

sumer's point of view, who has to make an investment decision in RES. We extend
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the probabilistic modeling approach to the GEP, where a probabilistic constraint on

the stochastic supply-demand imbalance of the energy park alone is imposed, by pe-

nalizing the power shortfall in the worst case scenarios which are not in the scope of

the probabilistic constraint. These additional payments which come as the expected

costs of a short power supply can be interpreted using techniques of risk management

via the CVaRβ and has an e�ect on the energy managers �here-and-now� decision of

the installed capacities of the power generation facilities. Increasing investment in RES

reduces expenses of power procurement at the market and increases the energy park's

level of reliability which is considered as the probability that the energy park in a �stand-

alone-application� can supply the demand. However, costs that emerge from a high level

of reliability can be economically infeasible and come as idle costs referring to unused

capacities. Therefore, it is bene�cial to consider the energy park's level of reliability

as an endogenous variable which is determined by energy manager's optimal, i.e. cost

minimizing choice of optimally installed capacities. Penalizing the power shortfall from

the energy park corresponds to the situation, where the energy manager a-priori includes

the possibility to procure power at the electricity wholesale market. Within the scope

of the model, the energy manager can procure residual power to cover the demand via

(i) �xed-price contracts or (ii) at the spot market with a volatile spot market price. The

application of the model to a use case without a feed-in-tari� shows, that in the case of

a �xed price contract, the energy manager does not invest in RES whenever the energy

price associated with the contract is below the threshold price, which itself depends on

the prices of the RES investment goods and is decreasing with decreasing prices of the

investment goods. In the case of the energy manager procuring power from the spot

market, the volatility associated with the spot price is additionally introduced in the

investment decision. Simulating spot market prices shows, that due to the occurrence

of multiple sources of uncertainty, the energy manager is sensitive to an increase in the
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uncertainty from spot price and increases investment in RES to hedge against spot price

volatility.
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