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Abstract

In this paper we compare two carbon mandate policies in the fuel producing context. With
the first policy, a mandate requires the fuel producers to use a minimum percentage of biofuel
in their fuel blend. With the second policy, the mandate is a carbon emission standard that
defines the maximum GHG emission level per unit of fuel blend. The comparison is made with
a partial equilibrium model where an innovator can licence the innovation to a fuel industry.

We show that the two policies have the same effect on the incentive to innovate for decreasing
the cost for producing biofuel. However the two policies differ when considering innovation
that leads to a reduction of the emission of biofuel. More precisely, there is no incentive to
innovate with quantity mandates while carbon emission standard can create incentives for such
innovation.
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1 Introduction

Using biofuel as a substitute to fossil fuel is one lever to reduce greenhouse gas emission. Indeed,

biofuel comes from biomass which production uses carbon dioxin. As a consequence, the carbon

footprint of biofuel is generally lower compared to fossil fuel. However, the production cost of

biofuel is higher compared to fossil fuel, leading to a lack of incentive to use this more environmental

friendly source of fuel. Different public policies have been implemented in Europe and Northern

America during the last decades to correct such market failure.

In this paper we compare the impact of two main biofuel related public policies on the promotion

of innovations in the biofuel sector. This issue is addressed in several recent papers (Clancy and

Moschini, 2018, 2016). Yet, these papers all focus on innovations enabling a decrease in the biofuel

marginal production cost. Our paper departs from this literature by considering innovations that

lower either the marginal production cost or the GHG emission of the biofuel.

One exemple of such innovation is Nitrogen Use Efficiency (NUE) in the rapeseed production1.

Rapeseed is a major input for biofuel in France. Improving Nitrogen Use Efficiency leads to a cost

reduction because it enables farmer to use less Nitrogen per ton of rapeseed. The production of

nitrogen fertilizer is also known for being a major source of GHG emission because it requires large

amount of energy. Hence, reducing the use of Nitrogen enables also to reduce the carbon footpring

of biofuel production. Several research programs, such as the french project named RAPSODYN2,

aim to promote NUE.

We compare two main public policies : a mandate that requires the fuel industry to blend a

minimum percentage of biofuel in their fuel, and a carbon emission standard that defines the max-

imum GHG emission level of the final fuel blend. The analysis takes place in a partial equilibrium

framework where an innovator can licence the innovation to a fuel industry that is imperfectly com-

petitive. This model is in line with those that have been developed in the agricultural economics

literature on public policies related to biofuel.

We first show that the two policies are equivalent with cost decreasing innovation: whatever

1see Charbonnier et al. (2019) for more details on this example).
2This project gathers a large consortium of public research units as well as private seed companies from 2013 to

2020. It received a public subsidy of 7Me.
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the objective of one of the policies, the same objective can be reached with the other one. This

property no longer holds with an emission-based innovation. We show that, whatever the level of

competition, a minimum mandate discourages the fuel industry to adopt this type of innovation.

Conversely, a carbon emission standard can create such incentive for this type of innovation.

The literature and our contribution to this literature are presented in the next section. The

model and its properties in the benchmark case with no regulation are presented in section 3.

We then compare the two policies with a cost decreasing innovation in the section 4 and with an

emission-based innovation in section 5.

2 Literature

Our paper first contributes to the theoretical literature on the promotion of environmental inno-

vation by carbon policies. This literature models a closed economy using the partial equilibrium

concept. It considers an R&D sector providing an innovation to a competitive fuel industry. The

innovation diminishes the marginal cost of a renewable input. The fuel industry decides whether

to buy the innovation and blends renewable inputs with conventional inputs to produce fuel.

In such setting, Clancy and Moschini (2018) studies the innovation incentive of a policy mandate

that obliges the fuel industry to blend a minimal quantity of renewable input. It shows that such

a mandate creates poor incentive for breakthrough innovation but strong incentive for incremental

innovation. In a similar setting, Clancy and Moschini (2016) shows that innovator entries in the

R&D sector depends on carbon policies. It finds that R&D subsidies provide more variation in the

number of entries than a carbon tax.

In real life, the fuel industry sets a margin on fuel sales and we aim to explore the effect of such

a margin on the equilibrium outcomes. We thus follow the partial equilibrium methodology but

extend it to imperfect competition on the fuel industry side. In addition, we extend the scope of

innovation by adding the possibility of an emission-based innovation, that is an innovation which

only diminishes the carbon emissions of renewable inputs.

Our paper also relates to the literature on the efficiency of carbon intensity standards. Carbon

intensity standards restrict the amount of carbon emission released by a fuel. This second strand
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of literature joins the above literature in the use of the partial equilibrium concept to assess the

policy effect.

Holland et al. (2009) shows that such a policy cannot be efficient. This essentially occurs

because the policy does decrease the production of high carbon fuel but increases the production of

low carbon fuel which possibly raise carbon emissions. Interestingly, Lade and Lawell (2018) finds

that a cost containment mechanism - over compliance cost - increases the efficiency of the policy.

We contribute to this literature by bringing a new insight. Such carbon intensive policy may

promote a new type of innovation that is not profitable under the largely spread minimum mandate

policies.

3 The benchmark situation: an unregulated industry

3.1 The model

We assume a λ-competitive industry C that produces fuel (e.g., diesel) in quantity q. The parameter

λ ∈ [0, 1] encompasses the industry competitiveness. When λ = 0, we model a perfectly competitive

industry while a λ = 1 means that the industry acts as if it were a monopolist. Fuel is a costless

blend of two inputs: a conventional input and a renewable input. The two inputs are perfect

substitutes. We denote the quantity of the conventional input by qc and the quantity of the

renewable input by qr. We assume the fuel production function is q = qc + qr. Note that although

renewable fuel often delivers less energy than the conventional fuel, it is possible to reason in

energy-equivalent quantities. The industry serves a representative consumer with inverse demand

for fuel given by P (q) = 1 − q. Assume each input is associated with an emission factor and that

the emission factor of the renewable input φr is lower than the one of conventional input φc = 1,

then the total emission of the produced fuel is qc+φrqr. Total emission enters negatively into total

welfare.

The industry bears increasing and convex production cost to produce the inputs that we denote

Cc(qc) and Cr(qr) respectively for conventional and renewable. For simplification and in line with

Clancy & Moschini (AJAE, 2017), we assume dCc
dqc

(qc) = cc ≥ 0 and dCr
dqr

(qr) = cr − θ + r + qr ≥ 0
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where θ measures an innovation efficiency brought by an external innovator, r is the royalty paid

by the industry to this innovator for the use of its innovation, cc is a constant parameter and the

same applies to cr. We assume that at best θ makes the marginal cost of the first unit nil θ ≤ cr. In

addition, we assume that ex ante innovation the renewable marginal cost is always higher than the

conventional marginal cost cc < cr but ex post innovation the renewable marginal cost may intersect

the conventional marginal cost. That is innovation brings sufficient cost efficiency θ ≥ cr − cc so

that cc ≥ cr − θ + r for some r ≥ 0.3 The monopolist innovator M can propose two types of

innovations: Cost-based innovation (CBI) which only decreases marginal renewable cost by θ and

a Emission-based innovation (EBI) that decreases the emissions of the renewable input from φr to

0.

Timing of the game. The timing of the game is as follows. The innovator decides whether

to innovate and if so then sets the level of the royalty r. The competitive industry observes the

innovation type and the associated royalty. It then decides whether to use the innovation and

produces fuel for the representative consumer given the market price. Finally, the representative

consumer buys the fuel from the competitive industry.

Profit functions. Given the final outcomes, and in particular the market price P, the profit

functions of the competitive industry denoted πC and the innovator denoted πM are:

πC = P.(qc + qr)− cc.qc − (cr + 1a.(r − θ) +
1

2
qr)qr (1)

πM = 1a.r.qr (2)

where 1a equals 1 if the competitive industry accepts to buy the innovation from the innovator,

and equals 0 otherwise.

3.2 The equilibrium outcomes

We solve for the Subgame Perfect Nash equilibrium in pure strategy (SPNE) using backward

induction. At the last stage, the industry chooses qc and qr so as to maximize its profits πC

3EU market approval mechanism
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given market price P . The first order conditions give ∂πC
∂qc

= λP ′ + P − cc = 0 and ∂πC
∂qr

=

λP ′ +P − cr − 1a(r− θ)− qr = 0. Remind that the parameter λ ∈ [0, 1] encompasses the industry

competitiveness. When λ = 0, we model a perfectly competitive industry while a λ = 1 means

that the industry acts as if it were a monopolist. At market equilibrium the market price equals

the inverse demand P = 1− q and we easily find the continuation equilibrium quantity of final fuel

and market price:

q∗ =
1− cc
1 + λ

& P ∗ =
λ+ cc
1 + λ

(3)

Whatever the final blend is, the final price always equals the conventional input marginal cost. The

final quantity of fuel q∗ is thus at the intersection of the inverse demand and the marginal cost of

the conventional input. Note that if the industry does not buy the innovation the marginal cost to

produce the renewable input remains strictly higher than the marginal cost of conventional input.

In this case, the industry uses only conventional input into the final blend and sells the latter at the

conventional marginal cost level. At the opposite, if the industry buys the innovation the marginal

cost of renewable input may intersect the marginal cost of conventional input for some pair (θ, r).

In that case, the industry may use both conventional and renewable inputs into the final blend

and sells the latter at the conventional marginal cost level. The industry this time makes positive

profits. Besides, in that case, a natural constraint arises: the total quantity of fuel must be higher

than the quantity of renewable input. We find the following continuation equilibrium quantities of

renewable inputs and conventional inputs:

qUr (1a) = Max{Min{1− cc ; cc − (cr + 1a(r − θ))}; 0} (4)

qUc (1a) =
1− cc
1 + λ

−Max{Min{1− cc ; cc − (cr + 1a(r − θ))}; 0} (5)

If the industry does not buy the innovation, the industry uses only conventional input into

the final blend and makes zero profits π(1a = 0) = 0. At the opposite, if the industry buys the

innovation then it may use both conventional and renewable inputs into the final blend. It is easy
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to see that the industry makes the following profits for some pair (θ, r)

πC(1a) =
[q∗r (1a)]

2

2
+ λ

(
1− cc
1 + λ

)2

Therefore, the industry prefers to buy the innovation whenever its profit from buying is higher than

its profit from not buying πC(1a = 1) ≥ πC(1a = 0). This is equivalent to q∗r (1a = 1) ≥ q∗r (1a = 0)

and it then obvious that this inequality holds as long as r ≤ cc − cr + θ.

The innovator correctly anticipates this behaviour and sets its royalty rate r so as to maximize

its expected profits under the constraint that the industry prefers to buy the innovation:

Max
r∈[0,θ]

πM = 1a.r.q
∗
r (1a)

s.t. πC(1a = 1) ≥ πC(1a = 0)

The first order condition gives dπM
dr = cc − cr + θ − r − r = 0 and the optimal royalty rate is:

rU = Min{cc − cr + θ

2
; 0} (6)

That royalty rate is strictly lower than the maximum royalty rate accepted by the industry and

the industry therefore buys the innovation. In other words, the buying constraint does not bind

and the industry strictly benefits from the innovation.

Note also that providing that the innovation is not too drastic then the quantity of renewable

input never exceeds the final quantity of fuel. A simple way too limit this innovation is to focus on

a sub-case where the original marginal cost of renewable input is also not too high.

Assumption 1. The marginal cost of the fist quantity of renewable input is not too high,

cr < 1/2.

We will see in the next sections that this assumption simplifies greatly the analysis without

loosing its interest and we provide insights in the appendices on what happens when we relax this

assumption. Under Assumption 1, we obtain the following equilibrium outcomes summarized in
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the following lemma.

Lemma 1. In the absence of regulation, the equilibrium price, quantities and profits are

PU =
λ+ cc
1 + λ

, qU =
1− cc
1 + λ

, qUr =
cc − cr + θ

2
, qUc =

1− cc
1 + λ

− cc − cr + θ

2

πUC =
(cc − cr + θ)2

8
+ λ

(
1− cc
1 + λ

)2

and πUM =

(
cc − cr + θ

2

)2

.

Intuitively, the innovator leaves some rent to the industry because the industry can credibly

commit not to produce any quantity of renewable input if the royalty rate is too high.

It is obvious that the emission-based innovation has no bite into the unregulated benchmark

essentially because it does not procure any monetized benefit to the industry.

3.3 The unregulated equilibrium blend

Lemma 2. Under Assumption 1, the unregulated blend gives a benchmark ratio between renewable

inputs and total fuel that we write:

γ̄(θ) =
cc − cr + θ

2(1− cc)
(1 + λ) (7)

The unregulated blend depends on the technology (state of the world). It is especially increasing

with respect to the technology cost efficiency. Indeed, the more renewable input is efficient in

production, the more the competitive industry uses renewable input into the final blend. Formally,

we have: ∂γ̄
∂θ = 1+λ

2(1−cc) ≥ 0 and ∂2γ̄
∂θ2

= 0. Remind that Assumption 1 is sufficient so that qR ≤ q but

it also sufficient so that θ belongs to the interval [cr − cc; cr] and the unregulated blend lies in its

interval [0; 1]. The maximal value of this unregulated blend is γ̄(θ = cr) = cc(1+λ)
2(1−cc) is positive and

lower than one given A1.

Figure 1 illustrates our findings. Obviously, for any state of technology θ, a policy imposing

a ratio lower than the unregulated blend constrains the competitive industry. We shall see in the

next sections that the innovator can exploit this constraint to increase its margin, henceforth the

royalty rate.
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Figure 1: Unregulated ratio

4 Regulated industry and cost-based innovation

In this section, a regulator tries to promote environmental innovation thanks to a unique environ-

mental policy.

4.1 The available emission policies

We focus our analysis on two main emission policies:

· Renewable share mandate (RSM) specifies the minimum share of renewable input to blend into

the final fuel. Denote such a mandate by γ, we formally get qr ≥ γq. The RSM is a priori useful

at least if it specifies a positive share of renewable input into the blend γ ≥ 0 while it is simply not

feasible if it specifies a share so that renewable inputs become higher than the final quantity γ ≤ 1.

We therefore assume that γ belongs to the interval [0, 1].

RSM : qr ≥ γq (8)

· Low carbon emission standard (LCES) specifies a threshold that fuel emissions must satisfy.

Denote such standard σ, then we formally get φcqc+φrqr
qc+qr

≤ σ. The LCES is a priori useful at least if
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it specifies lower emission amount than the maximal rate of emission σ ≤ φc = 1 while it is simply

not feasible if the standard is lower than the minimal emission rate σ ≥ φr. We therefore assume

that σ belongs to the interval [φr, 1] and rewrite the standard so as to get a ratio of renewable input

over total quantity that we denote γσ, meaning this is the σ−LCES equivalent of γ−RSM policy.

LCES : qr ≥
1− σ
1− φr

q ≡ γσ(φr).q (9)

Observe that ∂γσ
∂σ = − 1

1−φr ≤ 0 so that γσ is decreasing in σ. In addition, we can already notice

that γ does not change following an innovation whereas γσ does if the innovation is Emission-based.

This is going to be essential for the innovation incentive as we shall see in the next sections.

Note that most policies do not reach a ratio implementing as much as renewable as conventional

inputs (B7 in diesel, E10 in fuel). In addition, policies face the constraint of vehicle motors (”blend

wall”). The recent technology inside most car models does not permit to process a lot more

renewable fuel than the policies encourage. In France, there exist some alternative technologies

that aim to enhance the processing of renewable fuel by vehicle motors but this is still not well

spread in the market. This is explained by a high cost of its deployment joint with its marketing

strategy and the alternative of electric cars.

4.2 The new timing and equilibrium outcomes

The timing of the game is as follows. The regulator first chooses which emissions policy to implement

γ or σ. Then the innovator decides whether to innovate and if so then sets the level of the royalty r.

The competitive industry observes the policy and the innovation. It also decides whether to use the

innovation and produces fuel for the representative consumer given the market price. Finally, the

representative consumer buys the fuel from the competitive industry. We use backward induction

to find the SPNE of this game.

• The industry choice

At the stage of the competitive industry choice, the mandate can either bind or not. When it

does not bind we obtain the continuation equilibrium choices derived in the previous section (see
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Equation (5)). In what follows, we derive the continuation choices of the competitive industry under

a binding mandate. We remind that the competitive industry is price taker so the the competitive

industry’s profit maximization problem is

Max
qr,qc

πC = P.(qc + qr)− cc.qc − (cr + 1a.(r − θ) +
1

2
qr)qr

s.t. qr ≥ γq

Assuming the policy binds irrespective of the royalty rate then we can rewrite the whole profit

as function of the total quantoty q. We then obtain a First Order Condition giving that we can

rewrite to obtain the equilibrium price:

λP ′q + P = (1− γ)cc + γ(cr + 1a.(r − θ) + γq)

We recover the usual property than a competitive price (λ = 0) equals the average marginal

cost. At market equilibrium, total offer equals total demand so that P = 1−q. Simple computations

lead to the following continuation equilibrium quantity:

qγ(1a) =
1− (1− γ)cc − γ(cr + 1a)

1 + λ+ γ2

The continuation equilibrium input quantities hence write as follows: qγr (1a) = γqγ(1a) and

qγc (1a) = (1 − γ)qγ(1a). Note that, taking the royalty as given at the stage, any cost-innovation

innovation increases the equilibrium quantities of renewable inputs (∂q
γ
r

∂θ = γ2

1+λ+γ2
> 0). It contrasts

Clancy & Moschini (AJAE, 2017) where innovation does not impact the quantity of renewable input

due to the framing of the mandate which is a minimum quantity in their framework. Formally, the

authors consider a minimum quota mandate such that qr ≥ q̄.

Since we assumed qr = γq, the profit re-writes πc(1a) = (P − [(1− γ)cc + γ(cr + 1a + γq)]) q+

1
2(γq)2 = [qγr (1a)]2

2 − λP ′(q)2. At the continuation equilibrium we obtain:

πγc (1a) =

(
1

2
+

λ

γ2

)
[qγr (1a)]

2
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• The innovator choice

The innovator’s choice affects the regulation bindingness. We focus on policies that aim to

implement a higher ratio of renewable input over total fuel with respect to the unregulated one,

given a technological state θ. Figure 2 illustrates this assumption. That is the regulator is not

satisfied with the unregulated ratio even in the event where the industry buys the innovation. In

an extension, we explore what might happen in case the regulator makes a mistake of interpretation

of the technological state θ so that the policy may allow the innovator to choose whether it binds

or not.

Figure 2: Regulated ratio: cost-based innovation

If the industry does not buy the innovation the marginal cost to produce the renewable input

remains strictly higher than the marginal cost of conventional input. In contrast to the unregulated

case, the industry is now obliged to use both the conventional and renewable inputs into the final

blend and sells the latter at a higher price. The industry makes the following profit π(1a = 0) =(
1
2 + λ

γ2

)
[qγr (1a = 0)]2 which is now positive. On the other hand, if the industry buys the innovation

then the marginal cost of renewable input may intersect the marginal cost of conventional input for

some pair (θ, r). The industry uses both conventional and renewable inputs into the final blend.

Nevertheless, due to a binding regulation, it blends more renewable input than without regulation.

The industry makes the following profit for some pair (θ, r): πC(1a = 1) =
(

1
2 + λ

γ2

)
[qγr (1a = 1)]2.
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The industry prefers to buy the innovation if πC(1a = 1) ≥ πC(1a = 0) which boils down to r ≤ θ,

irrespective of λ.

The innovator anticipates the behaviour of the competitive industry and sets r so as to maximize

its profits under the constraint that the industry buys the innovation, that is

Max
r∈[0,θ]

πM = 1a.r.q
γ
r (1a)

s.t. πγC(1a = 1) ≥ πγC(1a = 0)

Appendix shows that the constraint binds under Assumption 1 and therefore the innovator sets

rCBI = θ (10)

Note that at (1a = 1 & r = θ) or (1a = 0), the quantity of renewable input is positive because

the mandate still obliges the industry to blend some renewable input. This burden is in the end

paid by the consumer through a higher market price. It enables the industry to make positive profit

even when the royalty is at its maximum willingness to pay or when it rejects the innovation. It

contrasts the benchmark situation where the profit turned to be nil, in those cases. In our model,

this new ”outside option” does not affect the bargaining process essentially because the innovator

remains a monopolist and still holds full bargaining power. We shall see in an extension what

happens if we relax such assumption on bargaining power.

The following lemma sumarizes the findings under a cost-based innovation.

Lemma 3. In the presence of cost-based innovation, the equilibrium price, quantities and profits,

given a binding policy γ, are

PCBI = λqCBI + γcc + (1− γ)(cr + γqCBI) , qCBI =
1− cc + γ(cc − cr)

1 + λ+ γ2
,

qCBIr = γqCBI , qCBIc = (1− γ)qCBI , πCBIC =

(
γ2

2
+ λ

)
[qCBI ]2 and πCBII = θγqCBI .

These values hold irrespective of the type of policy (γ or γσ).
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It is obvious that PCBI > PU and qCBI < qU . Also, the innovator is now able to capture all the

industry rent from the innovation because the industry is now obliged to produce some renewable

input and cannot threaten the innovator not to produce any. This explains why rCBI > rU . Note

that this holds true irrespective of the policy but as we shall see in next section policies are no

more equivalent with an emission-based innovation.

4.3 Profit comparative statics

Figure 3 shows the effect of variation of the policy level on the industry profit. Note that the

direction of change of the industry profit under perfect competition is the same as the direction

of change of the innovator profit (see eq (11) & (12)). Indeed, in that case, both profits vary as

function of the sign of the derivative of the renewable inputs. However, this correlation breaks

down under imperfect competition due to the presence of the extra terms linked to the industry

margin (see eq (12)).

∂πI
∂γ

= θ
∂qr
∂γ

(11)

∂πC
∂γ

= 2qr
∂qr
∂γ

(
1

2
+

λ

γ2

)
− 2λ

γ3
(qr)

2 (12)

Lemma 4. The industry equilibrium profit and the innovator equilibrium profit vary in the same

direction under perfect competition (λ = 0) but in potentially different directions under imperfect

competition (λ > 0).

Lemma 5. The industry equilibrium profit is increasing with respect to the policy mandate between

thresholds policy level that we denote γ̃1 and γ̃2 when competition is sufficiently fierce. Beyond

those levels or when competition is sufficiently soft, the profits are decreasing with respect to the

policy mandate.

Proof. see appendix
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Figure 3: Policy impact wrt λ-competitiveness, starting at perfect competition (λ = 0)

5 Regulated industry with emission-based innovation

5.1 Properties of policies and profits with EBI

• EBI only affects γσ

It is rather obvious that the RSM policy does not change following a EBI. However, a LCES

policy is affected by such an innovation. Following, a EBI the policy changes to γ′σ = 1− σ which

rewrites γ′σ = 1− σ = 1−Φr
1−Φr

(1− σ) = δγσ so that we have the equality below:

γ′σ = γσδ where δ ∈ [0, 1] (13)

• New industry participation constraint

The industry is willing to pay for the innovation whenever its profit with the innovation is higher

than its profit without innovation. The EBI does not affect the RSM policy and henceforth it is

obvious that the industry never buys the innovation when the royalty is strictly positive. In the

LCES case, note that the profit from a free innovation differs from the profit without innovation

because the EBI directly affects the policy level. The industry buys the innovation whenever

πC(1 = 1, δ) ≥ πC(1 = 0) which boils down to (in what follows we omit to write σ to alleviate
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notations):

r ≤ (1 + λ+ (δγ)2)

√
1
2 + λ

(δγ)2
δq[δγ, 0]−

√
1
2 + λ

(γ)2
q[γ, 0]√

1
2 + λ

(δγ)2
δ2γ

≡MWTP (δ) (14)

Note that the maximum willingness to pay, denoted MWTP, depends on the innovation effi-

ciency δ. In particular, the MWTP is positive as long as the innovation efficiency is above a certain

level.

δ ∈


√

1
2 + λ

(γ)2√
1
2 + λ

(δγ)2

q(γ, 0)

q(δγ, 0)
, 1

 (15)

5.2 The new equilibrium

The innovator anticipates correctly the participation constraint and optimises correspondingly.

Under RSM mandate, it can not sell the innovation because the industry is not interested in

buying it for any strictly positive royalty.

Under LCES mandate, it sets the following equilibrium royalty:

rEBI =



1−cc+δγ(cc−cr)
2δγ if δ ∈

[
2

√
1
2

+ λ
(γ)2√

1
2

+ λ
(δγ)2

q(γ,0)
q(δγ,0) , 1

]

MWTP (δ) if δ ∈

[ √
1
2

+ λ
(γ)2√

1
2

+ λ
(δγ)2

q(γ,0)
q(δγ,0) , 2

√
1
2

+ λ
(γ)2√

1
2

+ λ
(δγ)2

q(γ,0)
q(δγ,0)

]
0 otherwise

(16)

Proposition 1. When the innovator offers an emission-based innovation, it can only make rev-

enues under a carbon intense mandate γσ.

Lemma 6. In the presence of emission-based innovation, the equilibrium price, quantities and

profits, given a binding policy γ, are

- in case of RSM mandate γ, the same as those given by Lemma 3
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- in case of LCES mandate γσ:

PEBI = λqEBI + δγcc + (1− δγ)(cr + δγqEBI) , qEBI =
1− cc + δγ(cc − cr − rEBI)

1 + λ+ (δγ)2
,

qEBIr = δγqEBI , qEBIc = (1− δγ)qEBI , πEBIC =

(
(δγ)2

2
+ λ

)
[qEBI ]2 and πEBII = rEBIδγqEBI .

when δ ∈

[ √
1
2

+ λ
(γ)2√

1
2

+ λ
(δγ)2

q(γ,0)
q(δγ,0) , 1

]
. And the same as those in Lemma 3 otherwise.

6 Conclusion

To sum up, we compare two main public policies : a mandate that requires the fuel industry

to blend a minimum percentage of biofuel in their fuel, and a carbon emission standard that

defines the maximum GHG emission level of the final fuel blend. The analysis takes place in a

partial equilibrium framework where an innovator can licence the innovation to a fuel industry

that is imperfectly competitive. This model is in line with those that have been developed in the

agricultural economics literature on public policies related to biofuel (Clancy and Moschini, 2018,

2016).

We first show that the two policies are equivalent with cost decreasing innovation : whatever

the objective of one of the policies, the same objective can be reached with the other one. This

property no longer holds with an emission-based innovation. We show that, whatever the level of

competition, a minimum mandate discourages the fuel industry to adopt this type of innovation.

At the opposite, a carbon emission standard can create such incentive for this type of innovation.
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A Proofs

Proof of Equation 10

Providing the competitive fringe buys the innovation, the innovator maximizes the following profit

πI = qr.r. By replacing the values by the continuation equilibrium values we get:

πI = γ
(1− cc + γ(cc − cr − r + θ))

1 + λ+ γ2
.r

The First Order Condition gives

dπI
dr

= 0 ⇔ −γ.r + 1− cc + γ(cc − cr − r + θ) = 0

r =
cc − cr + θ

2
+

1− cc
2γ

This is the candidate equilibrium royalty providing the competitive fringe accepts the offer. Let’s

remind however that the maximum willingness to pay of the competitive fringe is r = θ - above

this value the competitive fringe is better off producing without the innovation, i.e. πC(1a = 1) <

πC(1a = 0). Therefore, in order to have the candidate royalty to be an equilibrium royalty it must

be lower than this maximum willingness to pay. That is:

θ >
cc − cr + θ

2
+

1− cc
2γ

⇔ 2γθ > (cc − cr + θ)γ + 1− cc

⇔ γ(θ + cr − cc) > 1− cc

⇔ γ >
1− cc

θ + cr − cc
≡ ˜̃γ(θ)

It is obvious that ˜̃γ(θ) is decreasing wrt θ and cr. Therefore, ˜̃γ(θ) reaches is minimum value

when θ is at its maximum i.e. cr. Under Assumption 1, cr is lower than 1
2 . In other words, the

extreme minimal value of ˜̃γ(θ) is reached at θ = cr = 1
2 which gives ˜̃γ(θ = cr = 1/2) = 1. Therefore

˜̃γ(θ) ≥ 1 while γ ≤ 1 and the candidate equilibrium royalty is not the equilibrium royalty. Since the

innovator’s profit function is increasing until the candidate equilibrium royalty then the equilibrium
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royalty is the maximum willingness to pay that is rCBI = θ.

Proof of Lemma 5

******************* PERFECT COMPETITION ******************************

According to Eq. (12), the sign of the industry profit is the same as the one of the derivative of

renewable input. Recall that the equilibrium quantity of renewable inputs denotes qCBIr . Let’s also

remind that under our binding policy γ, we also have qCBIr = γqCBI . Therefore, we have

dqCBIr

dγ
= qCBI + γ

dqCBI

dγ

It is easy to compute that dqCBI

dγ = − (cr−cc)(1−γ2)+2γ(1−cc)
1+γ2)2

< 0. It becomes then obvious that

in order to have dqCBIr
dγ > 0 we need γ < − qCBI

dqCBI

dγ

. Let us now compute this threshold. By

replacing, the values in the above derivative we get the following second degree polynomial in γ :

−(1− cc)γ2 − 2(cr − cc)γ + 1− cc. The second degree polynomial has a positive discriminant and

thus has two roots. We find that one of the roots is negative and we therefore get rid of it - remind

that γ ∈ [0, 1]. The positive root, that we denote γ̃, simplifies to:

γ̃ =
1− cc√

(cc − cr)2 + (1− cc)2 + cr − cc

It is easy to check that this root is positive. Also, we have
√

(cc − cr)2 + (1− cc)2 ≤
√

(1− cc)2 =

1− cc and hence
√

(cc − cr)2 + (1− cc)2 + cr ≥ 1 + cr− cc ≥ 1. So γ̃ belongs to [0, 1]. Furthermore,

the coefficient of the term with the second-degree exponent is negative which means that the

derivative is negative above γ̃ and positive below. Last, it is obvious from what we have seen that

˜gamma must intersect γ̄(θ) for some θ. This happens for some θ > cr henceforth the graph in

figure 3.

********************IMPERFECT COMPETITION ********************

We can show that

∂πC

∂γ
=

(1− cC − γ(cR − cC)) · (1− cC) · S
(1 + λ+ γ)3
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with

S = −2Tλ2 − (2T + 3γ)λ+ γ(1− γ2 − 2γT )

and T = (cR − cC)/(1− cC). Note that T ∈ [0, 1] with T = 0 if cR is minimum (equal to cC) and

T = 1 if cR is maximum (equal to 1).

S is quadratic and concave in λ. The lowest root is negative and the higest root is:

λ̃ =
(−2T + 3γ) +

√
(2T + γ)(9γ + 2T (1− 4γ2))

4T

It can be shown that we always have 9γ + 2T (1− 4γ2) > 0 for γ ∈ [0, 1] and T ∈ [0, 1]. 4

The figure below gives the value of λ̃ as a function of γ with various values of T . It can, be

shown that λ̃ > 0 for between 0 < γ <
√

1 + T 2 − T and that λ̃ < 0 for
√

1 + T 2 − T < γ < 1.

In summary, ∂πC/∂γ > 0 if 0 < γ <
√

1 + T 2 − T and λ ∈ [0, λ̃]. Otherwise ∂πC/∂γ < 0. Note

that λ̃ ≤ 1/3. Hence, if λ > 1/3, we always have ∂πC/∂γ < 0.

49γ + 2T (1− 4γ2) > 0 if γ < 1/2. If γ > 1/2, then 9γ + 2T (1− 4γ2) > 0 of T < 9γ/(2(1− 4γ2)) which is always
true because 9γ/(2(1− 4γ2)) > 1 for γ ∈ [0.5, 1].
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Proof of Equation 14

The industry buys the innovation whenever πC(1 = 1, δ) ≥ πC(1 = 0) which gives

(
1

2
+

λ

(δγ)2

)
δ2(q[δγ, r])2 ≥

(
1

2
+

λ

(γ)2

)
(q[γ, 0])2

√
1

2
+

λ

(δγ)2
δ

(
q[δγ, r]− δγr

1 + λ+ (δγ)2

)
≥

√
1

2
+

λ

(γ)2
(q[γ, 0])

r ≤ (1 + λ+ (δγ)2)

√
1
2 + λ

(δγ)2
δq[δγ, 0]−

√
1
2 + λ

(γ)2
q[γ, 0]√

1
2 + λ

(δγ)2
δ2γ

≡MWTP (δ)

Proof of Equation 16

We first easily find that the royalty rate is nil when the innovation efficiency is lower than the

minimum efficiency level. We thus only have to pin down on what conditions, the candidate

royalty - obtained without the participation constraint - is the optimal royalty. This is the case

whenever the participation constraint is satisfied at the royalty level. That is:

(
1

2
+

λ

(δγ)2

)
(δγ)2(

1

2

1− cc + γδ(cc − cr)
1 + λ(δγ)2

)2 ≥
(

1

2
+

λ

(γ)2

)
γ2(

1− cc + γδ(cc − cr)
1 + λ(δγ)2

)2

(
1

2
+

λ

(δγ)2

)
(
δ

2
)2(q[δγ, 0])2 ≥

(
1

2
+

λ

(γ)2

)
(q[γ, 0])2

√
1

2
+

λ

(δγ)2
(
δ

2
)(q[δγ, 0]) ≥

√
1

2
+

λ

(γ)2
(q[γ, 0])

Henceforth, the optimal royalty rate is the candidate one when δ ∈

[
2

√
1
2

+ λ
(γ)2√

1
2

+ λ
(δγ)2

q(γ,0)
q(δγ,0) , 1

]
and the

MWTP otherwise. Extending to the case where innovation efficiency can be lower to the minimum

efficiency level, we obtain equation 16.
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