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Abstract

We examine the behavior of a fossil fuel monopolist who faces demand from

two regions: a ‘climate club’ and the ‘rest of the world’ (ROW). Each region is able

to produce a perfect substitute for fossil energy at constant marginal costs. The

climate club uses a carbon tax and a renewables subsidy as policy instruments.

The ROW is policy-inactive. We show that, due to differences in climate policies

between the climate club and the ROW, the monopolistic fossil fuel supplier may

choose for two limit-pricing phases to postpone entry of renewables producers:

First in the clime club and later in the ROW. As soon as energy demand from the

climate club shifts from fossil fuels to renewables, the monopolist abruptly increases

the fossil price for the ROW. If the monopolist starts with limit-pricing in the climate

club from the beginning, a renewables subsidy and a carbon tax lead to an increase

in current resource use. If the initial oil price is below the limit price, however,

both policy instruments cause a decrease in current resource use. The renewables

subsidy speeds up resource depletion, whereas the effect of the carbon tax on the

depletion time is ambiguous.
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1 Introduction

A broad distinction can be made between countries or regions that conduct an active

climate policy and countries or regions that implement no policy at all or a lax policy.

For example, the EU can be considered as being more concerned with climate than

some African or Latin-American regions. There exists a large literature on the inter-

action of countries in this case. The phenomenon of carbon leakage as a consequence

of unilateral policies is amply studied (cf. Hoel, 1991; Babiker, 2005; Burniaux and

Martins, 2012; Van der Werf and Maria, 2012). However, two aspects are usually not

taken into account. The first is that climate change is to a large degree caused by the

use of fossil fuel from exhaustible resources (oil, gas and coal). The second is that the

supply of such resources cannot be characterized as purely competitive. Eichner and

Pethig (2011), Hoel (2011) and Ryszka and Withagen (2014) address exhaustibility

and policy differences between regions under perfect competition, whereas Andrade de

Sá and Daubanes (2016) and Van der Meijden and Withagen (2019) study the effects

of climate policy under monopolistic resource supply, where fossil demand comes from

a single region. In this paper we address these three issues—multiple regions, non-

renewable resources, and monopolistic supply—in a unified framework to more closely

examine the interaction between market structure and differences in policies between

regions. In particular we want to answer the question how the market equilibrium

looks like in a dynamic setting where two regions differ in the intensity of climate

change policies and supply of fossil fuel comes from a monopoly. Consequently, after

a full characterization of the equilibrium we want to investigate the impact of more

strict environmental policies. For example, will a tightening of climate policies in one

countries lead to faster overall supply and consumption of fossil fuel?

Our approach is closely related to earlier work by Van der Meijden et al. (2018). The

major difference lies in the modeling of the fossil fuel market. One could argue that

at the moment the monopolist is abandoning the market of the policy-active region,

which then makes the transition to renewables, the price set by the monopolist should

be continuous, due to the possibility of arbitrage. However, the assumption of perfect

arbitrage leading to price continuity can be questioned, and has been questioned in

the scientific literature as well as in field of policy design (cf. Hoel, 1984; Jaffe and

2



Soligo, 2002; Neumann and Zachmann, 2009). Nations and private actors do have built

strategic oil reserves (including in tankers), waiting for (the threat of) higher prices.

However, reliable estimates of such global oil inventories are lacking and therefore

the importance and likelihood of arbitrage can be subject to debate (cf. Strumpf and

Friedman, 2016). Van der Meijden et al. (2018, p. 154) also argue that there “is a

disagreement in the literature on whether the use of the reserves is an effective tool to

stabilize the oil markets and on whether the existing inventory is sufficient. Yet, these

stockpiles might facilitate speculation.” However, they only analyze the case of perfect

arbitrage with a continuous price path in the sequel of their paper.

Here, we examine the case in which the price path set by the monopolist may be

discontinuous. This might occur if the costs of storing oil are prohibitively high. We

provide a full characterization of the equilibrium on the oil market in the presence

of differentiated climate policies and monopolistic supply. We find equilibria with

double limit pricing, i.e., equilibria where first there is an interval of time where the

monopolist marginally undercuts the price of renewables in the policy-active region

and later there is an interval with limit pricing in the policy-inactive region. The limit-

pricing phenomenon is well known in the industrial organization literature but it is

shown here that is can occur also in resource economics. For a single market this was

already shown long time ago by Salant (l979), Hoel (1978) and Stiglitz and Dasgupta

(1982). Here we demonstrate limit-pricing behavior in a sequence of markets. We

show that the final limit-pricing phase necessarily occurs, whereas the intermediate

limit-pricing phase may be degenerate. We also perform an analysis of the impact of

unilateral policy changes. We find that an increase of the carbon tax or the renewables

subsidy only leads to larger initial extraction if the monopolist starts with limit-pricing

in the policy-active region from the beginning. If the fossil price is below the limit price

in the policy-active region initially, a carbon tax and a renewables subsidy both cause

a decrease in initial resource supply. Hence, a weak green paradox does occur in the

former, but not in the latter case. However, the subsidy always gives causes more rapid

depletion of the resource, which could lead to a strong green paradox.1 The carbon tax

1A weak green paradox is said to occur if climate policies result in an increase in current carbon
emissions, whereas a strong green paradox entails an increase in the present value of climate damages
(cf. Gerlagh, 2011).
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has an ambiguous effect on the speed of depletion.

The problem we address is not only interesting from an economic and a policy

perspective, but it also raises an interesting and challenging optimal control problem,

because, depending on the market on which the monopolist focuses, demand condi-

tions differ. Hence, the analysis gives rise to a two-stage optimal control problem

with a possible price jump at the transition from serving two markets to serving a

single market. We solve for the entire equilibrium under rather general conditions.

Technically, our analysis is related to Hoel (1984) and Wang and Zhao (2013, 2018),

who study a resource monopoly with a perfect substitute that either is only suitable for

some of the resource’s uses (Hoel, 1984) or is subject to a capacity constraint (Wang

and Zhao, 2013, 2018), leading to a discontinuity in the demand function at the price

of the substitute.

The remainder of the paper is structured as follows. Section 2 describes the model.

Section 3 and derives the necessary conditions for an equilibrium. Section 4 gives a full

account of the resulting equilibrium, depending on the primitives of the model. Section

5 deals with policy interventions. Section 6 concludes.

2 The monopolist’s problem

Energy demand comes from two regions, A and B. Energy supply consists of renewable

and of fossil resources, assumed to be perfect substitutes. Renewable energy is com-

petitively produced in both regions at a unit cost b > 0, whereas fossil fuel is supplied

by a monopolist in a third region, where there is no domestic demand for energy. The

monopolist cannot discriminate across regions. It has an initial resource stock S0. The

extraction rate is denoted by q and the constant marginal extraction cost by k.2 Region

A conducts an active climate policy by imposing a constant unit carbon tax τ on its

consumers and giving them a constant unit subsidy σ on the use of renewables. With p

denoting the producer price of fossil fuel, region A’s consumer prices for fossil fuel and

renewables are thus p+τ and b−σ, respectively. Region B is policy-inactive. Aggregate

demand for fossil fuel is qA + qB, consisting of demand qA from region A and demand

2We impose constant marginal extraction costs for simplicity. In the conclusion, we discuss the
consequences of allowing for nonlinear costs.
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qB from region B. The monopolist faces a problem in two stages. Stage 1 starts at time

zero and lasts until time T2. During stage 1, we have p + τ ≤ b − σ. Hence, there is

fossil fuel demand from region B, and possibly from region A as well. Stage 2 starts

at time T2 and lasts until time T4. In this stage we have p + τ > b − σ and p ≤ b, so

there is no fossil demand anymore from region A. Time T4 is the final moment at which

extraction takes place. Both the switching time T2 and the final time of fossil fuel use

T4 are optimally chosen by the monopolist. Each stage consists of two intermediate

phases. In the first stage, from time zero until time T1 ≤ T2 the consumer price of fossil

fuel is strictly below the consumer price of renewables: p+ τ < b− σ, whereas from T1

onwards there is limit pricing for region A, meaning p + τ = b − σ. The two phases in

stage 2 consist of a phase from T2 until T3 with p + τ > b − σ and p < b and a second

phase from T3 until T4 with p = b, with limit pricing for region B. The optimality of

this sequence of phases is formally demonstrated below. We denote the producer price

in the first stage, when t < T2, by p1(q), and the producer price when t ≥ T2, by p2(q).

We also define b̂ ≡ b− σ − τ .

Demand is illustrated in Figure 1, where we use q̂i (with i = A,B) to denote

maximal demand for fossil fuel in region i if the consumer price is b−σ, or, equivalently,

if the producer price is b̂. Aggregate maximal demand at this price is defined as

q̂ ≡ q̂A + q̂B. Similarly, q̃i represents maximal demand in region i if the consumer

price is b, and we define q̃ ≡ q̃A+ q̃B (of course q̃A = 0 if b̂ < b). We assume k < b,

which implies that at some instant of time all fossil fuel will be exhausted.

Instantaneous profits in stage j (with j = 1, 2) are denoted by Πj(q) = pj(q)q − kq,

with q ≡ qA+qB, and are assumed to be concave for both j. We tackle the maximization

problem of the monopolist by using two-stage optimal control theory (cf. Tomiyama,

1985; Makris, 2001; Valente, 2010). The idea is to first solve the problems in the two

stages separately for given T2 ≥ 0, T4 ≥ T2 ≥ 0 and ST2, and to subsequently determine

the optimal T2, T4 and ST2 , where ST2 denotes the remaining stock at instant of time T2.
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Figure 1: Regional and aggregate demand
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3 Necessary conditions for an equilibrium

The stage 1 problem reads

max
q

∫ T2

0
e−rtΠ1(q(t))dt,

subject to

Ṡ(t) = − q(t), q(t) ≥ 0, S(t) ≥ 0, S(0) = S0, S(T2) = ST2 , (1a)

b̂ ≥ p1(q(t)). (1b)

Here, S(t) is the stock of fossil fuel at instant of time t and r is the constant interest

rate. By Λ1(T2, ST2) we denote the maximal profits in the first stage.

The stage 2 problem reads

max
q

∫ T4

T2
e−rtΠ2(q(t))dt,

subject to

Ṡ(t) = − q(t), q(t) ≥ 0, S(t) ≥ 0, S(T2) = S
T2
, (2a)

b ≥ p2(q(t)), (2b)

p2(q(t)) ≥ b̂. (2c)

This yields Λ2(T2, T4, ST2), the maximal profits in the second stage. Subsequently, we

determine the optimal T2, T4 and ST2 by solving

max
T2,T4,ST2

Λ1(T2, ST2) + Λ2(T2, T4, ST2),

subject to T2 ≥ 0, T4 ≥ T2 ≥ 0 and S0 ≥ ST2 ≥ 0.

Consider the problem in the first stage. Neglecting the non-negativity constraint on

the extraction rate, we write the Hamiltonian and the Lagrangian as follows:

H1(q, λ1, t) = e−rtΠ1(q)− λ1q, (3)
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L1(q, λ1, t) = e−rtΠ1(q)− λ1q + µ11(b̂− p1(q)).

Here the multiplier µ11 corresponds with (1b) and λ1 is the shadow price of the re-

source stock. In the absence of stock-dependent extraction costs the shadow price λ1 is

constant. In an optimum, the Lagrangian is maximized with respect to the extraction

rate. We omit the time argument when there is no danger of confusion. Hence, for

q > 0,

e−rtΠ′1(q) = λ1 + µ11p
′
1(q). (4)

This equation says that if the restriction b̂ ≥ p1(q) is not binding, so that µ11 = 0, the

present value of net marginal revenues of extraction (left-hand side) equals the shadow

price of the resource λ1. If limit pricing occurs, i.e., if p = b̂, the monopolist would want

to decrease supply and thereby increase the price. The marginal cost of not being able

to do this without losing demand from region A is −µ11p
′
1(q̂).

The Hamiltonian and Lagrangian of the second stage read, respectively,

H2(q, λ2, t) = e−rtΠ2(q)− λ2q, (5)

L2(q, λ2, t) = e−rtΠ2(q)− λ2q + µ21(b− p2(q)) + µ22(p2(q)− b̂),

where µ21 and µ22 are the non-negative Lagrange multipliers associated with the in-

equalities (2b) and (2c), respectively. The necessary condition with respect to extrac-

tion reads

e−rtΠ′2(q) = λ2 + µ21p
′
2(q)− µ22p

′
2(q). (6)

If the second stage is non-degenerate T4 > T2 ≥ 0, the Hamiltonian for the second-stage

problem should equal zero at time T4. In shorthand3

H2(T4) = 0. (7)

3This condition is obtained by noting that ∂Λ2(T2, T4, S(T2))/∂T4 = H2(T4) (cf. Theorem 3.9 in
Seierstad and Sydsæter, 1987, p. 213).
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In Lemma 2 below will exclude the possibility of the optimality of only having the first

stage.

This completes the characterization of the equilibrium in the separate stages. To

connect the two stages, assuming both are non-degenerate, note that the monopolist

has to optimize not only with respect to the extraction rate and the final moment of

extraction, T4, but also with respect to the time T2 of abandoning market A and the

remaining stock at the switching time, ST2. It has been shown by Tomiyama (1985)

that in an interior solution (with 0 < T2 < T4) the two additional necessary conditions

associated with these two decisions are given by4

H−1 = H+
2 , (8)

λ1 = λ2, (9)

where we use the short-hand notation x− ≡ limt↑T2 x(t) and x+ ≡ limt↓T2 x(t) in (8)

and in the sequel as well. Condition (9) allows us to leave out the index of the co-

state variables in the remainder of the paper. The following lemma states that the price

path is non-decreasing over time and is continuous within each of the two stages but is

discontinuous at the transition from stage 1 to stage 2.

Lemma 1

(i) The equilibrium price path is non-decreasing over time.

(ii) The equilibrium price path is continuous for all t except at T2, where it jumps up if

T4 > T2 > 0.

(iii) T4 > T3.

Proof. See Appendix A.1. �

Intuitively, a decreasing price would imply decreasing marginal profits over time. This

cannot be an equilibrium as the monopolist would then prefer early over later ex-

traction. Furthermore, a jump in the price would imply a jump in marginal profits,
4Condition (8) is obtained by noting that ∂Λ1(T2, S(T2))/∂T2 = H1(T2) and Λ2(T2, T4, S(T2))/∂T2 =

−H2(T2) (cf. Theorem 3.9 in Seierstad and Sydsæter, 1987, p. 213).
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which cannot occur along continuous parts of the marginal profit function, due to the

continuity of the shadow price. However, as soon as demand from region A vanishes,

the price of fossil fuel increases discontinuously. The reason is that if the monopolist

would decide to shift from supplying both markets to merely supplying market B

without increasing the price, its instantaneous profits would decrease. Hence, it would

then be better for the monopolist to keep on serving both markets. Finally, without a

final limit-pricing phase, marginal profits would jump up at T3 = T4, implying that it

would be profitable for the monopolist to conserve the last unit of the resource and sell

it after T3 = T4, which contradicts optimality.

4 Equilibrium

The equilibrium consists of a number of consecutive extraction phases. In this section

we provide a full description of all possible sequences of phases, depending on the

primitives of the model. From Lemma 1 we know that there is always a final phase with

limit pricing for region B. However, it could well be that other phases are degenerate.

Hence, our aim is to determine the conditions under which the equilibrium takes a

particular form.

4.1 Preliminaries

First, we make a distinction according to the signs of the marginal profits during the

two limit-pricing phases: in the first stage evaluated in q̂, Π′1(q̂), and in the second stage

evaluated in q̃, Π′2(q̃). With Π′1(q̂) < 0 strict concavity of Π1 implies Π′
1(q) < 0 for all

q > q̂. Hence, in view of (4) there is no initial phase with q > q̂. Therefore T1 = 0. Also,

Π′
2(q̃) < 0 implies Π′

2(q) < 0 for all q > q̃, because of (6), and therefore T3 = T2.

Second, suppose S0 = ∞. Then, we have λ = 0. Now, if Π′1(q̂) < 0 we get from (4)

that q− = q̂. However, if Π′1(q̂) ≥ 0, then q− can be solved from Π′1(q−) = 0. Similarly,

if Π′2(q̃) < 0 we get from (6) that q+ = q̃. However, if Π′2(q̃) ≥ 0, then q+ can be solved
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from Π′2(q+) = 0. Let us now define

q̄ =


Π′−1

1 (0) if Π′1(q̂) ≥ 0

q̂ if Π′1(q̂) < 0
,

q =


Π′−1

2 (0) if Π′2(q̃) ≥ 0

q̃ if Π′2(q̃) < 0
,

and take an arbitrarily large initial stock, implying that λ ≈ 0. According to (4) and

(6), extraction in stage 1 and 2 would indeed equal q̄ and q, respectively. Then, if

Π1(q̄)− Π2(q) ≤ 0,

we getH1 ≤ H2 from the beginning. As a result, stage 1 is degenerate, yielding T2 = 0.5

Finally, let us define the functions

f(y) = Π1(q̂)− Π2(y)− Π′

2(y)(q̂ − y), (10)

g(x) = Π1(x)− Π2(q̃)− Π′

1(x)(x− q̃). (11)

Note that −f(q+) measures the change in net profits (i.e., after subtraction of the

scarcity rent) at the moment the monopolist switches from stage 1 to stage 2 with

limit pricing just before the switch (q− = q̂) but no limit pricing immediately after

(q+ > q̃). Similarly, −g(q−) measures the change in net profits at the switching instant

if there is no limit pricing just before (q− > q̂) but there is limit-pricing immediately

after the switch (q+ = q̃).

Three properties of (10) and (11) will prove to be useful for characterizing the

equilibrium. First, for q̂B > y > q̃

f ′(y) = −Π
′′

2 (y)(q̂ − y) > 0, (12)

5It can be shown that Ḣ1 − Ḣ2 = −r(H1 −H2)− rλ(q1 − q2), where qi denotes the optimal q in stage
i = 1, 2, with q1 > q2. Hence, if H1(0) ≤ H2(0), then H1(t) < H2(t)∀ t > 0.
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so that f(q̃) > 0 implies f(y) > 0 for all q̂B > y > q̃. Second, we have

f(q̂B) = (b̂− k − Π′

2(q̂B))(q̂ − q̂B) = −q̂Bp′2(q̂B)(q̂ − q̂B) > 0.

Hence, f(q̃) < 0 implies that f(y) = 0 has a solution for q̃ < y < q̂B. Third, for x > q̂

g′(x) = −Π′′

1(x)(x− q̃) > 0, (13)

so that g(q̂) > 0 implies g(x) > 0 for all x > q̂.

We summarize these preliminary findings in the following lemma:

Lemma 2

(i) Suppose Π′1(q̂) < 0. Then the first phase of the first stage collapses (T1 = 0).

(ii) Suppose Π′2(q̃) < 0. Then the first phase of the second stage collapses (T2 = T3).

(iii) Suppose Π1(q̄)− Π2(q) ≤ 0. Then the first stage collapses (T1 = T2 = 0).

(iv) Suppose f(q̃) > 0. Then there is no q̃ < y < q̂B with f(y) = 0.

(v) Suppose f(q̃) < 0. Then f(y) = 0 has a solution with q̃ < y < q̂B.

(vi) Suppose g(q̂) > 0. Then there is no x > q̂ with g(x) = 0.

4.2 A linear example

In this section, we present an example with linear demand to show that the signs of

Π′1(q̂), Π′2(q̃), f(q̃) and g(q̂) can indeed be positive and negative. The demand functions

for fossil fuel read

qA =


αA − βA(p+ τ) if p+ τ ≤ b− σ

0 if p+ τ > b− σ
,

qB = αB − βBp.

Adding the two gives

q = qA + qB = αA + αB − (βA + βB)p− βAτ for p+ τ ≤ b− σ.
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Using p1(q̂) + τ = b− σ and p2(q̃) = b yields, respectively,

q̂ = αA + αB − (βA + βB)(b− σ) + βBτ,

q̃ = αB − βBb.

In order to have an interesting problem we assume throughout that q̂ > 0 and q̃ > 0.

The inverse demand functions in the two stages read

p1(q) = αA + αB
βA + βB

− βA
βA + βB

τ − 1
βA + βB

q,

p2(q) = αB
βB
− 1
βB
q.

The profit functions are given by

Π1(q) =
(
αA + αB
βA + βB

− βA
βA + βB

τ − k − 1
βA + βB

q

)
q,

Π2(q) =
(
αB
βB
− 1
βB
q − k

)
q.

Marginal profits at q = q̂ in stage 1 and at q = q̃ in stage 2 read, respectively,

Π′1(q̂) = 2(b− σ)− k − αA + αB
βA + βB

− τ − βB
βA + βB

τ,

Π′2(q̃) = 2b− k − αB
βB

.

Take τ = σ = 0 and k = 1
2b. Then

Π′1(q̂) = 1
2b+ b− αA + αB

βA + βB
,

Π′2(q̃) = 1
2b+ b− αB

βB
.

To get positive q̂ and q̃ we then need b− αA+αB

βA+βB
< 0 and b− αB

βB
< 0, respectively. Clearly,

by taking αA = αB = α and βA = βB = β and α
β
> 3

2b we have Π′1(q̂) < 0 and Π′2(q̃) < 0.

On the other hand Π′1(q̂) > 0 and Π′2(q̃) > 0 if α
β
< 3

2b. By taking βA = βB = β and αA

large enough compared to αB so that αA+αB

2β > 3
2b and αB

2β < 3
2b we find Π′1(q̂) < 0 and

Π′2(q̃) > 0. For αA small enough compared to αB we get the reverse.
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Furthermore, we have

f(q̃) = (b− σ − τ − k)q̂ − (b− k)q̃ −
(

2b− k − αB
βB

)
(q̂ − q̃).

For both τ and σ close to zero, this expression boils down to

f(q̃) =
(
αB
βB
− b

)
(q̂ − q̃) > 0.

For τ + σ close to b− k, we get

f(q̃) =
(
αB
βB
− 2b+ k

)
q̂ −

(
αB
βB
− b

)
q̃.

This expression is negative if the coefficient of q̂ is negative. Next, let us consider g(q̂).

g(q̂) =
(
αA + αB
βA + βB

+ βB
βA + βB

τ − (b− σ)
)

(q̂ − q̃)− (τ + σ)q̃.

For τ = 0, the equation g(q̂) = 0 has two solutions:

σ = − αA − bβA
βA + βB

+

√
−(αA − βAb)(αB − βBb)

βA + βB
,

σ = − αA − bβA
βA + βB

−

√
−(αA − βAb)(αB − βBb)

βA + βB
.

A positive q̃ requires αB − βBb > 0. Hence, if αA − βAb < 0, g(q̂) = 0 has two real

solutions of which at least one is strictly positive. Therefore, we conclude that g(q̂) can

both be positive and negative.

4.3 Characterization of the equilibrium

We now outline our strategy to characterize the equilibrium. The first step is to identify

potential equilibria. The second step is to choose between them. To illustrate the

approach, consider the case where Π′1(q̂) < 0 and Π′2(q̃) > 0. Then, in qualitative terms,

an equilibrium candidate is T4 > T3 > T2 > T1 = 0. Indeed T1 = 0 because Π′1(q̂) < 0. If

the equilibrium is of this type, the necessary conditions allow us to determine T4 − T3,

and the price jump at T2, both independent of the existing resource stock. Hence,
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we then know how much fossil fuel is used in the final period T4 − T3. We also find

the amount of fossil fuel used in the period T3 − T2, since the amount extracted is

known for each moment in the interval. Hence, there are two threshold levels for the

initial resource stock. If the stock is small—smaller than (T4 − T3)q̃—the equilibrium

only has limit pricing at the price b. We can also determine the initial stock such that

0 = T2 < T3. This is the second threshold. Finally, for a still larger initial stock we

have T2 > 0. Hence, starting from the ‘general’ equilibrium, phases collapse for smaller

initial resource stocks. In the sequel we sometimes omit introducing symbols for the

threshold levels, if the outcomes are evident. Throughout, we will focus on equilibria in

which the first stage is non-degenerate, at least not a priori. Hence, in view of Lemma

2 (iii), we impose Π1(q̄)− Π2(q) > 0.

4.3.1 Case 1: Π′1(q̂) < 0 and Π′2(q̃) < 0

Figure 2: Equilibrium price path in Case 1

b

b̂

time2 3T T= 4T

This case applies if demand is inelastic. In our linear example, we need a high αA+αB

βA+βB

or a high tax, and a high αB

βB
. With inelastic demand, it is to be expected that there will

only be limit pricing in both stages. This is confirmed by Lemma 2 (i) and (ii). A typical

equilibrium constellation is depicted in Figure 2.
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The remaining question is whether T2 = 0 or T2 > 0. Conditions (7), (8) and (9)

imply

Π1(q̂)− Π2(q̃)
q̂ − q̃

= Π2(q̃)
q̃

er(T2−T4). (14)

We have Π1(q̂)
q̂

= b̂− k < Π2(q̃)
q̃

= b− k. Hence,

Π1(q̂)− Π2(q̃) = Π2(q̃)
q̃

(q̂ − q̃)er(T2−T4) <
Π2(q̃)
q̃

(q̂ − q̃), (15)

which gives T4 − T2 > 0. However, this does not yet imply that T2 > 0. Indeed, let the

threshold level S1 be defined by

S1 = (T4 − T2)q̃, (16)

where T4 − T2 solves (14). Then S0 > S1 is a necessary and sufficient condition for

T2 > 0.

We arrive at the following proposition:

Proposition 1 Suppose Π′1(q̂) < 0, Π′2(q̃) < 0 and Π1(q̄) − Π2(q) > 0. If the initial stock

is small, then T4 > T3 = T2 = T1 = 0. Otherwise T4 > T3 = T2 > T1 = 0.

4.3.2 Case 2: Π′1(q̂) > 0 and Π′2(q̃) < 0

The example suggests that this case is relevant for a low tax or a small αA+αB

βA+βB
but a

large αB

βB
. Intuitively, with positive marginal profits during limit pricing in stage 1, the

monopolist will choose for an initial phase with p < b̂ if its initial stock is large enough.

Based on Lemma 2, a typical equilibrium looks as in Figure 3, with still no interval of

time where b̂ < p < b. The optimal path has a final stage, from T2 = T3 till T4 > T3

with limit pricing only, at price b. It is yet to be found out whether T2 > T1 = 0 or

T2 > T1 > 0 or T2 = T1 > 0.

First, suppose that g(q̂) > 0. In an equilibrium with T4 > T2 > T1 > 0, conditions

(4), (8), (9) require

er(T1−T2)(Π1(q̂)− Π2(q̃))− Π′1 (q̂) (q̂ − q̃) = 0, (17)
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Figure 3: Equilibrium price path in Case 2

b̂

time1T
4T

b

2 3T T

which has a positive solution T2 − T1 > 0 if g(q̂) > 0. From (4) and (7) we have

e−rT1Π′

1(q̂) = e−rT4
Π2(q̃)
q̃

. (18)

Combining (17) and (18) yields

er(T4−T2)(Π1(q̂)− Π2(q̃))− Π2(q̃)
(
q̂

q̃
− 1

)
= 0. (19)

Furthermore, we have

Π1(q̂)− Π2(q̃)− Π2(q̃)
(
q̂

q̃
− 1

)
< q̂

(
Π1(q̂)
q̂
− Π2(q̃)

q̃

)
= q̂(b̂− b) < 0. (20)

Together, (19) and (20) imply T4 − T2 > 0. In a similar way to how we defined S1 in

Case 1, our solutions for T2 − T1 > 0 and T4 − T2 > 0 now allow us to define two new

threshold initial stocks (a ‘small’ and an ‘intermediate’ one) to be used in Proposition 2

below.

Now, suppose g(q̂) < 0. The proposed equilibrium is no longer a solution: one phase

must collapse so the equilibrium has T1 = T2 > 0 and q− > q̂. Intuitively, the change
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in profits due to switching from stage 1 to stage 2 only after the price has reached b̂ is

strictly positive, implying that it is profitable to make this switch earlier by skipping the

limit-pricing phase of the first stage. Conditions (4), (7), (8) and (9) now imply

Π1(q−)− Π2(q̃)− Π′1(q−)(q− − q̃) = 0, (21)

er(T4−T1)Π′

1(q−) = Π2(q̃)
q̃

, (22)

which yields T4 − T1 and provides another threshold level.

The following proposition holds:

Proposition 2

(i) Suppose Π′1(q̂) > 0, Π′2(q̃) < 0 and g(q̂) < 0. If the initial stock is small, then

T4 > T3 = T2 = T1 = 0. If the initial stock is large, then T4 > T3 = T2 = T1 > 0.

(ii) Suppose Π′1(q̂) > 0, Π′2(q̃) < 0 and g(q̂) > 0. If the initial stock is small, then

T4 > T3 = T2 = T1 = 0. If the initial stock takes intermediate values, then T4 >

T3 = T2 > T1 = 0. If the initial stock it large, then T4 > T3 = T2 > T1 > 0.

4.3.3 Case 3: Π′1(q̂) < 0 and Π′2(q̃) > 0

In the example, this case would occur for a high tax or a large αA+αB

βA+βB
but a small αB

βB
. As

in Case 1 we have T1 = 0. Intuitively, with negative marginal profits at the limit price

of the first stage, the monopolist sets its price as high as possible during this stage, i.e.,

p = b̂. However, because marginal profits are positive at the limit price in the second

stage, the monopolist may now opt for an initial second-stage phase with a price below

the limit price b. A typical equilibrium constellation is depicted in Figure 4.

First, suppose f(q̃) < 0. In an equilibrium with T4 > T3 > T2 > T1 = 0, conditions

(6), (8) and (9) require f(q+) = 0. According to Lemma 2 (v), this equation has a

solution with q̃ < q+ < q̂B. Additionally, (6) and (7) imply

er(T4−T3)Π′

2(q̃) = Π2(q̃)
q̃

, (23)

er(T3−T2)Π′

2(q+) = Π′

2(q̃), (24)
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Figure 4: Equilibrium price path in Case 3

b

b̂

time2T 3T 4T

which give T4 − T3 > 0 and T3 − T2 > 0 and hence provide two initial stock threshold

levels.

According to Lemma 2 (iv), the proposed sequence of phases is not an equilibrium

if f(q̃) > 0. In this case, we must have T3 = T2. This can be seen as follows. We

necessarily have T4 > T3 and T1 = 0. Moreover, T4 − T3 is finite and at least one phase

must collapse. Intuitively, if f(q̃) > 0 switching from stage 1 to stage 2 with q− = q̂ and

q+ > q̃ would imply a decrease in net profits at the switching instant. Hence, it would

be better for the monopolist to wait for a while, let the scarcity rent increase, and then

switch from the limit-pricing phase in stage 1 immediately to the limit-pricing phase in

stage 2, just as in Case 1. The initial threshold can now be found by solving (14).

So, we have the following proposition:

Proposition 3

(i) Suppose Π′1(q̂) < 0, Π′2(q̃) > 0 and f(q̃) < 0. If the initial stock is small, then

T4 > T3 = T2 = T1 = 0. If the initial stock takes intermediate values, then T4 >

T3 > T2 = T1 = 0. If the initial stock is large, then T4 > T3 > T2 > T1 = 0.

(ii) Suppose Π′1(q̂) < 0, Π′2(q̃) > 0 and f(q̃) > 0. If the initial stock is small, then
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T4 > T3 = T2 = T1 = 0. If the initial stock is large, then T4 > T3 = T2 > T1 = 0.

4.3.4 Case 4. Positive marginal profits Π′1(q̂) > 0 and Π′2(q̃) > 0

Figure 5: Equilibrium price path in Case 4

b̂

time1T
2T 3T 4T

b

Positive marginal profits occur in the example with αA = αB, βA = βB, small τ and

2b− k − α
β
> 0. A typical equilibrium constellation is depicted in Figure 5.

First, suppose f(q̃) < 0. An equilibrium with T4 > T3 > T2 > T1 > 0 requires

f(q+) = 0 to have a solution with q̃ < q < q̂B. According to Lemma 2 (v) this is indeed

the case if f(q̃) < 0. Conditions (23) and (24) together with

er(T4−T1)Π′

1(q̂) = Π2(q̃) (25)

yield T4 − T3 > 0, T3 − T2 > 0 and T2 − T1. Hence, they provide three initial stock

threshold levels.

Now suppose f(q̃) > 0. Then there is no solution to f(q+) = 0 with the desired

properties. According to Lemma 2 (iv), the equilibrium T3 > T2 > T1 can be excluded.

Furthermore, the equilibrium T3 > T2 = T1 can be excluded as well. The reason is that
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by taking the derivative of f(y) with respect to q̂ and evaluating it at q+ we get

df(q+)
dq̂

= Π′

1(q̂)− Π′

2(q+) > 0 for q > q̂, (26)

where the inequality follows from Π′
2(q+) = Π′

1(q−) < Π′
1(q̂), due to strict concavity of

Π1 for q > q̂. Hence, f(q̃) > 0 implies T2 = T3 so that the first phase of the second stage

is degenerate. As in Case 3, the intuition is that with f(q̃) > 0 switching from stage 1

to stage 2 with q+ > q̃ would imply a decrease in net profits at the switching instant.

Therefore, it is profitable for the monopolist to wait for a while, let the scarcity rent and

the resource price grow over time and immediately set the limit price after switching

to the second stage.

To find out whether the second phase of the first stage exists, we need to examine

the sign of g(q̂). If g(q̂) > 0, Lemma 2 (vi) implies T2 > T1. Hence, the equilibrium

reads T4 > T3 = T2 > T1 > 0 for a large enough inial stock (with initial phases

collapsing for smaller initial stocks). However, if g(q̂) < 0, equation (13) implies that

g(q−) = 0 has a solution with q− > q̂, yielding T2 = T1 so that the equilibrium reads

T4 > T3 = T2 = T1 > 0 for a large enough inial stock (again, with initial phases

collapsing for smaller initial stocks). Intuitively, if g(q̂) < 0 the change in net profit at

the switching instant is strictly positive if the monopolist would wait until the limit price

of the first stage is reached. Hence, it is profit-enhancing to make the switch earlier in

time.

The following proposition summarizes the results:

Proposition 4

(i) Suppose Π′1(q̂) > 0,Π′2(q̃) > 0 and f(q̃) < 0. For a large initial resource stock the

equilibrium has T4 > T3 > T2 > T1 > 0. For decreasing resource stocks the phases

collapse in reverse order: Tj > 0 as long as Tj−1 > 0, for j ≥ 1.

(ii) Suppose Π′1(q̂) > 0, Π′2(q̃) > 0, f(q̃) > 0 and g(q̂) > 0. For large initial resource

stocks it holds that T4 > T3 = T2 > T1 > 0, for intermediate resource stocks it holds

that T4 > T3 = T2 > T1 = 0 and for small stocks it holds that T4 > T3 = T2 = T1 =

0.
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(iii) Suppose Π′1(q̂) > 0, Π′2(q̃) > 0, f(q̃) > 0 and g(q̂) < 0. For large initial resource

stocks it holds that T4 > T3 = T2 = T1 > 0 and for small stocks it holds that

T4 > T3 = T2 = T1 = 0.

5 Policy considerations

In the present framework several policy relevant issues can be addressed. For example,

how does the introduction or tightening of climate policies in one region, while the

other region stays inactive, affect the supply of fossil fuel? Of course, if the equilibrium

is such that market A is not served at all, marginal changes in policies have no effect.

So, we concentrate on the case where the initial producer price is not larger than b̂.

If q(0) = q̂ then b̂ falls so that q̂ increases if σ or τ goes up. Hence, initial extraction

goes up upon an increase in the carbon tax or an increase in the subsidy on renewables.

Accordingly, both instruments cause a weak green paradox. Due to carbon leakage from

region A to region B, this result differs from findings of Andrade de Sá and Daubanes

(2016), which are obtained in a single-market context with inelastic demand.

However, if q(0) > q̂ a carbon tax and a renewables subsidy both lead to a decrease

in initial extraction: the weak green paradox disappears. This is in line with the single-

market monopoly case studied in Van der Meijden and Withagen (2019). The idea

is simple. The policy change reduces the profitability of the monopolist, because the

constraints get tougher. Moreover, in this case (with limit pricing in the first stage after

the price being below b̂ initially) we have that total discounted profits as a function

of the relevant parameters (i.e., the initial stock, the marginal cost of renewables, the

tax and the subsidy) Λ(S0, b, σ, τ) equals the Hamiltonian at time zero, divided by the

discount rate r,H1(0)/r. This is a result well-known in standard optimal control theory.

Here, in a two-stage optimal control problem, it still holds due to the continuity of

the Hamiltonian at the switching instant. From the strict concavity of (p1(q) − k)q in

q it follows from H1(0) = −p′1(q(0))q2(0) that dH1(0)/dq(0) > 0. Therefore, we get

dq(0)/dσ < 0 and dq(0)/dτ < 0. Then a strengthening of climate policy in terms of

a higher carbon tax or a higher subsidy on renewables reduces initial extraction and

therefor mitigates climate change initially.
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Although the weak green paradox does not occur in an equilibrium with q(0) > q̂,

the renewables subsidy does gives rise to earlier depletion of fossil fuel, and thereby

enhances climate change and the corresponding damages. This can be seen as follows.

Equation (4) implies

p′1(q(0))q(0) + p1(q(0), τ)− k = λ.

By taking the total derivative, we get

dλ = [p′′(q(0))q(0) + 2p′(q(0))] dq(0)− ∂p1(q, τ)
∂τ

dτ.

The term in brackets is negative, due to strict concavity of the profit function. Since

q(0) goes down as a consequence of the higher subsidy, as has been shown above, the

shadow price λ goes up. It follows from H2(T4) = 0, which implies λ = (b − k)e−rT4 ,

that T4 goes down. The effect of a marginally higher tax is ambiguous, however, due to

the final term the total derivative above. The reason is that the tax lowers the producer

price at each level of supply.

6 Conclusions

In this paper we have offered a full characterization of the equilibrium in a two-region

model of resource extraction by a monopolist. The regions have different climate

policies in place: one region, the ‘climate club’ imposes a renewables subsidy and a

carbon tax, whereas the other region is policy-inactive. We focus on the case where it is

too expensive for arbitrators to buy and store large reserves of the resource in order to

arbitrage away jumps in the resource price. However, instantaneous arbitrage prevents

the monopolist from discriminating its price between regions.

The framework gives rise to a two-stage optimal control problem for the monopolist.

Two stages appear in the equilibrium: A first stage, in which both regional markets, i.e.,

the markets in the regions with and without climate policies, are served (at least if the

initial resource stock is large enough). This first stage is followed by a second one

in which only the policy-inactive region is supplied with fossil fuel. In principle there
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are four phases, two in each stage: one with the resource price below the limit price

(and increasing over time) and one with a price at the limit price (which is constant

over time). The resource price jumps up at the moment at which fossil demand from

the climate club vanishes. The reason is that the monopolist needs an increase in the

resource price to compensate for the lost demand, to prevent a downward jump in its

profits at the switching instant.

Moreover, we have identified conditions under which one or more of the four phases

collapse. There does always exist a final phase with limit pricing in the region without

active climate policy. The intermediate limit-pricing phase at the end of the first stage,

however, may be skipped by the monopolist. This occurs, for example, if marginal

profits at the limit price in the first stage are positive and high compared to marginal

profits in the second stage at the same price. On the contrary, if marginal profits at

the limit prices of the first and the second stage are negative, the equilibrium consists

of limit-pricing throughout: first at the renewables price net of the carbon tax and the

renewables subsidy (with demand coming from both regions), and subsequently at the

renewables price (with demand coming only from the policy-inactive region), with a

positive price jump at the switching instant.

It has been shown that a weak green paradox only occurs if the monopolist starts

with limit-pricing in the policy-active region from the beginning. If the initial price is

below the limit price in the first stage, both a carbon tax and a renewables subsidy

cause a decrease in initial resource supply. However, the subsidy always gives rise to

earlier depletion of the resource, which could cause a strong green paradox. The effect

of a carbon tax on the speed of depletion is ambiguous, as the tax has an immediate

negative effect on resource demand for a given producer price.

Finally, it can be shown numerically that the absence of arbitrage on the fossil

fuel market is beneficial to the policy-active country considering unilateral climate

action, because a larger share of the resource stock is sold to this region. It is just

too costly to buy and store fossil fuel resource stocks to be used in the policy-inactive

region. Furthermore, the policy-inactive region in first instance benefits from policies,

because of the low fossil fuel price that is due to the fact that the climate club is

subsidizing renewable energy, or taxing emissions, but that later on the inactive region
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is confronted with much higher fossil fuel prices, once renewables take over in the

policy active region.

Our study leaves some interesting issues for future research. For instance, we

assume linear extraction costs to simplify the characterization of the equilibrium. Gen-

eralizing our analysis to strictly convex extraction costs does not change the potential

sequences of phases in equilibrium, but it would make simultaneous use of the resource

and the substitute possible. One can easily show that simultaneous use then necessarily

occurs during the second part of the final limit-pricing phase and that it may occur

during the second part of the intermediate limit-pricing phase. Furthermore, Appendix

A.2 shows that, for a specific set of parameter values, the price jump at the switch from

the first to the second stage may vanish under quadratic extraction costs. Furthermore,

it would be interesting to allow for differences in climate policies between countries

within the policy-active world, which would give rise to the existence of additional

limit-pricing regimes. Also, deriving optimal policies in this framework could provide

insights for policy makers. Other options are to allow for price discrimination between

the climate club and the rest of the world, set-up costs of renewables, to consider

strategic behavior on the part of the importing and exporting regions, and to examine

market structures such as oligopoly or cartel-fringe (cf. Benchekroun et al., 2009, 2010,

2019). Finally, it would be interesting to allow for technological progress in the back-

stop technology, for R&D expenditures on developing better backstop technologies (cf.

Jaakkola, 2019), and partial exhaustion if the marginal costs of the backstop technology

rapidly fall below the marginal extraction cost of fossil fuels (cf. Fischer and Salant,

2017).
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A Appendix

A.1 Proof of Lemma 1

Along an interval of time with p < b̂ we have e−rtΠ′1(q) = λ, so that from the constancy

of λ and the concavity of Π1, the price is continuous and increasing. Along an interval of

time with b > p > b̂ we have e−rtΠ′2(q) = λ and the same argument applies. Obviously,

the price is continuous along intervals of time where p = b̂ or p = b. We now rule out

a price path that has, in shorthand, p(t1) = b̂ and p(t2) < b̂ for some t2 > t1 ≥ 0. It

follows from (4) that if such an equilibrium path would exist

e−rt1Π′1(q(t1)) ≤ λ = e−rt2Π′1(q(t2)).

From concavity of net revenues it follows that q(t1) > q(t2). But p1(q(t1)) > p1(q(t2))

by assumption so that we get a contradiction. In the same way it can be shown that

p2(t1) = b for some t1 ≥ 0 implies that p2(t) ≥ b for all t > t1. Next, we show that the

price path is continuous at T1 where a transition takes place from p1 < b̂ to p1 = b̂. To

see this, suppose an upward jump occurs at T1. Hence p1(T−1 ) < p1(T+
1 ) = b̂. Then

e−rT2Π′1(q(T−1 )) = λ ≥ e−rT2Π′1(q(T+
1 )).

But this implies from concavity that q(T−1 ) < q(T+
1 ) contradicting p1(T−1 ) < p1(T+

1 ). The

same argument holds to show that at T3 the price is continuous.

(ii) Suppose that the price is continuous at T2. Then p(T−2 ) = p(T+
2 ) = b̂. Since

q(T−2 ) = q̂A + q̂B and q(T+
2 ) = q̂B > 0, it follows from (6), (8) and (9) that H1(T2) =

H2(T2) = 0. However, substitution of (6) into (5) gives

H2(T2) = −
{
e−rT2p′2(q(T+

2 ))q(T+
2 ) + µ22(T+

2 )p′2(q(T+
2 ))

}
q(T+

2 ) > 0,

where we have used p2(q(T+
2 )) = b̂ < b, implying that µ21(T+

2 ) = 0. Hence, we get a

contradiction.

(iii) It cannot be optimal to have a final phase with q(T4) > q̃, because then p(T4) < b

and supply of fossil fuel does not meet demand. Moreover, if q(t) > q̃ for an interval of
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time (T, T4) then e−rtΠ′2(q(t)) = e−rT4 Π2(q̃)
q̃

for all t close enough to T4,which contradicts

strict concavity of the profit function.

A.2 Price continuity with quadratic extraction costs

Consider the quadratic extraction cost function

c(q) = kq + 1
2ωq

2.

Conditions (6), (8) and (9) imply that the price is continuous at T2 if

Π1(q̂)− Π2(q̂B)
q̂ − q̂B

= Π′2(q̂B),

with q̂B = αB − βB b̂. It is straightforward to show that this equality holds if

αB − βB(b− σ − τ)
αA − βA(b− σ) = 1

2ωβB,

The left-hand side is nonzero, because q̂B > 0 by assumption. Hence, with linear

extraction costs the price is discontinuous at T2, whereas it may be continuous for

other specifications, although it should be noted that in this example with quadratic

costs, price continuity holds for a specific set of parameter values.
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